
Effect of four-photon interactions on coherent population trapping in L-systems

ip in
B. A. Grishanin, V. N. Zadkov

International Laser Center, M. V. Lomonosov Moscow State University, 119899 Moscow, Russia

D. Meschede

Institut für Angewandte Physik der Universita¨t Bonn, Wegelerstr. 8, D-53115 Bonn, Germany
~Submitted 26 June 1997!
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The resonance fluorescence spectrum of aL-system excited by two resonant light fields is
calculated using a Markov analysis. Analytical formulas are derived in the strong-field limit within
and beyond the rotating wave approximation. It is shown that the resonance fluorescence of
the system does not vanish during coherent population trapping. Its spectrum consists of two
multiplets which are similar to a triplet in the resonance fluorescence spectrum of a two-
level atom and lie at the electronic transition frequencies, together with two triplets located at the
frequencies of four-photon processes involving the optical excitation fields. The latter are
fundamental in character and impose limits on the lower bound of the dephasing rate for the
Raman resonance owing to the effect of radiative decay of the dipole transitions on the
dynamics of the ground state. The effect of four-photon dephasing on the absorption spectrum of
a L-system is analyzed and found to lead to a substantial reduction in the depth of a dip in
the absorption spectrum which vanishes as the laser field strength is increased. ©1998 American
Institute of Physics.@S1063-7761~98!01001-4#

1. INTRODUCTION resonance fluorescence spectrum is and how deep the d
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The interaction of electromagnetic fields with atoms
one of the most fundamental problems in quantum optics
is known that a much wider range of effects occur in mu
level atoms than in two-level atoms owing to field-induc
coherence between the atomic states and quantum inte
ence. The three-level systems realized inL-, J-, and V-
configurations play an important role in research on th
effects, as they are of intermediate complexity between t
level and multilevel atoms. A whole series of new effec
have been observed in them; coherent population trappin
one of the most intriguing and has been studied intens
both experimentally and theoretically.~See the reviews by
Agap’ev et al.1 and Arimondo2 and the references cite
there.! Coherent populating trapping shows up most clea
in a three-level system with two close long-lived levels an
third level which lies far from them~L- or V-systems! that
have been excited by two cw laser fields, so that the dis
level is optically coupled to the two others. Tuning the driv
fields to resonance with its dipole transitions leads to tr
ping of the populations of the system in a coherent supe
sition of the two close levels. In Raman absorption spec
this effect shows up as a very narrow dip against the ba
ground of an absorption line and in resonance fluoresce
spectra it is observed as the absence of emission, which
led to its being referred to as a ‘‘dark’’~or ‘‘coherent popu-
lation trapping’’! resonance.

In this article we study the question of how four-phot
interactions affect the coherent population trapping effec
a L-system excited by two cw laser fields, in particular, ho
‘‘dark’’ the coherent population trapping resonance in t
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the Raman absorption spectrum is. A rough estimate of
intensity of resonance fluorescence in aL-system during co-
herent population trapping has been made in the rota
wave approximation3 which yields zero fluorescence inten
sity for two-level atoms. The same result can be seen in
5c of Narducciet al.,4 which shows a calculated fluorescen
spectrum for aL-system. This indicates that during cohere
population trapping aL-system does not radiate and the da
line is entirely absent in its resonance fluorescence spect

Our calculations, presented in this paper in t
asymptotic limit of a strong field, show, however, that t
resonance fluorescence of a system does not vanish du
coherent population trapping. Its spectrum consists of t
multiplets, similar to the triplet in the resonance spectrum
two-level atoms and located at the electronic transition f
quencies, together with two triplets located at the frequenc
of four-photon processes involving the pump light fields. T
latter are fundamental in character and impose limits on
lower bound of the dephasing rate of the Raman resona
owing to the contribution to the dynamics of the ground st
from radiative decay of dipole transitions. The effect of t
four-photon dephasing mechanism on the absorption s
trum of aL-system is analyzed and found to lead to a su
stantial reduction in the depth of a dip in the absorpti
spectrum that vanishes as the laser field intensity is
creased.

This article is organized as follows: Section 2 is devot
to a description of the complete Liouvillian of an atom inte
acting with a laser radiation field. The specific features of
excitation of two-level atoms and aL-system are analyzed
In Sec. 3 the resonance fluorescence spectrum of aL-system
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outside the range of validity of this approximation. The e
fect of four-photon interactions involving the driver ligh
fields on coherent population trapping and their role in
formation of the absorption resonance and in the disper
of the L-system are analyzed in Secs. 4 and 5, respectiv
Most of the voluminous mathematical calculations are c
ried out in the Appendix. In the Conclusion we discuss
experiment for detecting the calculated structure of the re
nance fluorescence spectrum of aL-system.

2. LIOUVILLIAN OF AN ATOM BEYOND THE RANGE OF
VALIDITY OF THE ROTATING WAVE APPROXIMATION;
DYNAMICAL TRANSFORMATIONS USED TO CALCULATE
THE FLUORESCENCE SPECTRUM

The complete Liouvillian of an atom, which describ
changes in the atomic variables according to the equa
dÂ/dt5L(t)Â in Markov theory, has the form

L~ t !5L01Ld1Lr1LL~ t !. ~1!

Here L0 is the unperturbed Liouvillian (i /\)@Ĥ0 ,(#, in-
cluding the free precession of the atom at the laser frequ
cies according to Eq.~A4! of Appendix A. ~The symbol(
denotes a place for substituting a transformed operator.! Lr

andLd determine the dynamics of the atom owing, resp
tively, to relaxation and nonzero detuning of the frequenc
of the driver laser fields from the resonance transition f
quencies in the atom~resonance excitation is described
L0!, while LL(t) describes the laser excitation.

In terms of the interaction representation the transform
tion S(0,t) corresponding to the Liouvillian~1! takes the
form

S~0,t !5SRWA~0,t !S̃0~0,t !eL0t, ~2!

where the superoperators

SRWA~0,t !5exp~LRWAt !, LRWA5Ld1L r1Lp ~3!

determine the system dynamics in the rotating wave appr
mation ~RWA!,

S̃0~0,t !5T expF E
0

t

dLp~t!dtG ~4!

is the evolution superoperator for the dynamics of the sys
owing to the nonresonant excitation component, and

dLp~ t !5eL0tLL~ t !e2L0t2Lp ~5!

is the deviation from the average valueLp of the Liouvillian
for the laser excitation.5 The symbol T used in Eq.~4! de-
notes the time ordering of the superoperator taken in qu
tum mechanics.

The deviationdLp(t) in Eq. ~5! oscillates at the fre-
quencies of the laser drive fields and their combinatio
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tive to the resonant excitation contribution for the amplitu
of driver waves smaller than the amplitude of the intr
atomic field. In a first-order approximation with respect
this parameter, the evolution superoperator has the form

S~0,t !5S~0,t !RWAF11E
0

t

dLp~t!dtGeL0t. ~6!

Note that this approximation is valid if the value of the int
gral is less than of order unity.

We now consider the specifics features of the excitat
of a two-level atom and aL-system.

2.1. Excitation of a two-level atom

For a two-level atom excited by a laser fie
EL cos(vLt), Eq. ~5! takes the form

dLp~t!5 i
V0

2
@ŝ1 exp~22ivLt !

1ŝ2 exp~2ivLt !,(#, ~7!

where V0 is the Rabi frequency andŝ6 are the standard
Pauli matrices. Applying Eq.~7! to the complex polarization
amplitudeŝ1 and using Eq.~6!, we find thatS(t)ŝ1 deter-
mines the structure of a triplet~because of the presence
the termS(t)RWA! in the resonance fluorescence spectrum
a two-level atom at a frequency of 3vL ,5 which is analogous
to the known triplet at the laser excitation frequency.6,7 Inte-
grating with respect tot in Eq. ~6!, we can easily show tha
the ratio of the corresponding amplitudes of the spec
components at the frequencies of the third harmonic and
laser light is proportional to the small quantityV0 /2vL .

2.2. Excitation of a L-system

Let us consider aL-system consisting of three electron
levels with transition frequencies among them
v12!v13, v23 ~Fig. 1!. Two coherent fieldsE cos(vLt) and
E8 cos(vL8t) act, respectively, on the transitions 1↔3 and
2↔3. These fields interact with the complete dipole mom
of the system determined by the operatord13ŝ131d23ŝ23,
whereŝ13,23 are the Pauli matricesŝ1 for the corresponding
atomic transitions. As a result, the induced dipole momen
the system oscillates at frequencies6vL and6vL8 .

As opposed to the case of two-level atoms, where b
driver fields interact with one and the same atomic transiti
during excitation of aL-system each field interacts with tw
transitions. Thus, the Liouvillian corresponding to biha
monic laser excitation with a frequency detunin
D5vL82vL takes~according to Eq.~B3!! the form

dLp~t!5
i\gL

2
@~ t̂eiDt1 t̂1e2 iDt!,(#, ~8!

80Grishanin et al.



r
es-
ith

ls;

m
er-
FIG. 1. A L-system~a! and a typical arrangement fo
the experimental measurement of resonance fluor
cence induced by two monochromatic laser fields w
frequenciesvL and vL8 ~b!. g, g8, andg12 are the re-
laxation rates of the populations in the upper leve
G13 , G23 , andG12 are the dephasing rates; and,w is the
rate of pumping to level 2. The fluorescence spectru
of the atoms is analyzed using a Fabry-Perot interf
ometer~FP! and a photodiode~PD! in a direction per-
pendicular to the directions of the laser~Lb! and atom
~Ab! beams.
wheregL5Ag21g82, g5d13E8, g85d23E, and the opera-
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where ŝ6(t) are the Heisenberg positive~negative! fre-
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tor t̂ is defined as

t̂5gL
21~gŝ13

1 1g8ŝ23
2 !. ~9!

In deriving Eq.~8! we have neglected terms containing su
with higher frequencies.

Equation ~8! obviously determines additional spectr
components at frequenciesvL6D and vL86D, of which
only the components atvL2D and vL81D are new. The
correspond to four-photon processes and should show u
a symmetricL-system as a mirror reflection of the virtu
levels of the subsystem of lower levels~Fig. 2! owing to
modulation of the 1↔3 and 2↔3 transitions by the intrinsic
oscillatory frequencyD'v12 of the lower level subsystem
It is known that four-photon frequency mixing leads to ge
eration of a coherent signal at the Stokes and anti-Sto
frequencies.8 Our later calculations show, however, th
these nonlinear resonances are also accompanied by
bands because of incoherent scattering processes.

The above analysis shows that the important differe
between exciting a two-level atom~see Eq.~7!! and aL-
system~Eq. ~8!! is that excitation in the case of theL-system
is mainly determined by the biharmonic frequency detun
D. In experiments this detuning is usually much smaller th
the frequencies of the laser systems that are exciting the
tem. This means that the intensity of the additional com
nents in the fluorescence spectrum~fine structure!, which is
determined by the exponential factors in Eqs.~7! and ~8!, is
substantially higher for aL-system than for a two-leve
atom.

3. CALCULATING THE FLUORESCENCE SPECTRUM OF A
L-SYSTEM

The spectral density of the emission from an exci
atom~resonance fluorescence spectrum! is determined by the
normally ordered two-time correlation function of the lig
emitted by the atom.9,10 Assuming that the atomic fluctua
tions are Markovian, i.e., they are independent of one
other at timest andt1t, we can write down the correlatio
function for the atomic fluorescence in the form

K ~t!5^r̂0S~0,t !uŝ2~ t !@S~ t,t1t!ŝ1~ t1t!#&, ~10!
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quency operators. These operators have a time depend
only in the form of high-frequency oscillations at optic
frequencies. The superoperatorsS(0,t) and S(t,t1t) de-
scribe the relaxation and interaction of the atoms with
exciting laser fields during the time intervals (0,t) and
(t,t1t), andr̂0S(0,t) is the density matrixr̂(t) at timet. It
follows from Eq. ~3! that the superoperatorsS(0,t) and
S(t,t1t) are simple exponentials of the form exp@LRWAt#,
according to the rotating wave approximation.

The termŝ2(t)@S(t,t1t)ŝ1(t1t)# in Eq. ~10! is sim-
ply the product of the two operatorsŝ2(t) and ŝ1(t1t)
averaged over the fluctuations in the time interval (t,t1t).
This averaging is carried out with the aid of the transform
tion S(t,t1t), which determines the conditional atom
quantum mechanical probability distribution function at tim
t1t relative to timet. The emission spectrum of the ato
can then be calculated as the Fourier transform of the co
lation function~10!.

In the stationary case the density matrix in the vec
representation is simply the zero vector^0u of the matrix of
the evolution superoperatorLRWA. Then we can obtain the
stationary correlation function from Eq.~10! by averaging it
over the temporal oscillations. This averaging leads to
replacement of the bilinear combination of the complete
eratorsŝ6(t) by two combinations:

FIG. 2. A L-resonance and additional resonances which determine the
structure of the resonance fluorescence spectrum.

81Grishanin et al.



ŝ2~ t !3ŝ1~ t1t!→ŝ13
2 3ŝ13

1 ~t! % ŝ23
2 3ŝ23
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Similarly, we have

K ~t!→K 1~t!1K 2~t!.

When we calculate the resonance fluorescence spectru
the atom in the rotating wave approximation the correlat
functions K 1,2(t) correspond to the frequenciesv13'vL

andv23'vL8 and when we calculate the fine structure of t
spectrum beyond the range of validity of this approximat
they correspond, respectively, to the frequenc
vL2D52vL2vL8 andvL81D52vL82vL . ~See Sec. 2.2.!

On describing theL-system with the aid of the Liouvil-
lian in the rotating wave approximation and expanding it
terms of the eigen-projectors, we obtain the following re
tively simple expression:

K ~t!5 (
k50

8

$^0uŝ13
2

•uk&&^kuŝ13
1 &exp@~lk2 ivL!t#

1^0uŝ23
2

•uk&&^kuŝ23
1 &exp@~lk2 ivL8 !t#}, ~11!

where the symbol ‘‘•’’ means that the operators are mult
plied in accordance with the multiplication rules for oper
tors and the result is presented in the form of a ket-vec
lk , uk&, and ^ku are the eigenvalues of the matrix and t
eigenvectors of the LiouvillianLRWA.

Using Eq.~11! together with Appendix B we can obtai
the following expression for the correlation function that d
scribes the structure of the resonance fluorescence spec
of the atom outside the range of validity of the rotating wa
approximation:

K ~t!5
gL

2

4v12
2 (

k50

8

^0uŝ12
2

•uk&^kuŝ12
1 &$exp@2 i ~vL2D!t#

1exp@2 i ~vL81D!t#%exp~lkt!, ~12!

where theŝ12
6 are the complex conjugate amplitude of t

subsystem of lower levels which modulate the dipole m
ment of the transition. This modulation gives rise to ne
spectral components in the fluorescence spectrum.

Recall that Eq.~12! describes only the basic structure
the fluorescence spectrum, which is determined by the
rametergL /v12, which, in turn, we assume to be sma
Here we have neglected the higher order contribution wh
makes a nonzero contribution to the coherent componen
the response in the rotating wave approximation, which co
ponent equals zero when this correction is neglected i
strong field in a first-order approximation with respect to t
parameterG/gL for detuningsd, dR'0 ~by analogy with the
two-level atom7!.

3.1. Fluorescence spectrum in the rotating field
approximation

The fluorescence spectrum determined by Eq.~11! is the
sum of Lorentz spectrum lines whose total spectral pow
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are proportional to the coefficient in front of the correspon
ing exponent in Eq.~11!, while their width and frequency
shift are determined by the real and imaginary parts of
eigenvalueslk . In general, the fluorescence spectrum can
calculated numerically. In an asymptotically strong fie
however, as we shall show below~and has been demon
strated previously4 for a special case! an analytic solution
can also be obtained.

For simplicity let us consider aL-system excited by two
high-power laser fields of equal intensity. In this case we c
average the relaxation of the system over the Rabi nutati
while the Hamiltonian corresponding to the laser-induc

precession operatorLp5( i /\)@Ĥp ,(# takes the form

Ĥp5\
g

2
ŝ5\

gL

2& S 0 1 1

1 0 0

1 0 0
D .

This Hamiltonian corresponds to quasi-energy states with
ergies that are shifted with respect to the eigenvalues of

Hamiltonian Ĥp , which equal$0,6gL/2%.11 ~For a two-
level atom the eigenvalues of the Hamiltonian are equa
$6gL/2%!. The temporal dynamics of these mixed qua
energy states cause oscillations in the expected values o
physical variables at two different frequenciesgL andgL/2 .
The physical significance of these nutations in terms of
quasienergy levels is illustrated in Fig. 3.

The Rabi nutations between the quasi-energy levels
described by a Liouvillian which, in the operator bas

$n̂3 ,n̂1 ,n̂2 ,ŝ12
c ,ŝ12

s ,ŝ13
c ,ŝ13

s ,ŝ23
c ,ŝ23

s % ~the indicesc and s
denote the cosine and sine components, respectively!, takes
the form

FIG. 3. The formation of Rabi nutations in a two-level atom~a! and in a
L-system~b!. Only a minimum set of transitions between the quasiene
states, corresponding to the set of all possible lines in the fluoresc
spectrum, is shown,

82Grishanin et al.
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Lp5

¨

0 0 0 0 0 0
gL

2
0

gL

2

0 0 0 0 0 0 2
gL

2
0 0

0 0 0 0 0 0 0 0 2
gL

2

0 0 0 0 0 0 2
gL

2&
0 2

gL

2&

0 0 0 0 0
gL

2&
0 2

gL

2&
0

0 0 0 0 2
gL

2&
0 0 0 0

2
gL

2

gL

2
0

gL

2&
0 0 0 0 0

0 0 0 0
gL

2&
0 0 0 0

2
gL

2
0

gL

2

gL

2&
0 0 0 0 0

©

. ~13!

Its eigenvalueslk (k50, ..., 8) areequal to 0, 0, 0,2 igL/2, 2 igL/2, igL/2, igL/2, 2 igL , igL , while the corresponding se
of eigenvectors is defined as

$ck%5

¦

0 0 0 0 0 A1/2 0 A1/2 0

0 21/2 21/2 A1/2 0 0 0 0 0

A1/2 223/2 223/2 1/2 0 0 0 0 0

0 i /2 2 i /2 0 0 0 21/2 0 1/2

0 0 0 0 A1/2 2 i /2 0 i /2 0

0 0 0 0 A1/2 i /2 0 2 i /2 0

0 2 i /2 i /2 0 0 0 21/2 0 1/2

1/2 21/4 21/4 2223/2 0 0 2 i /2 0 2 i /2

1/2 21/4 21/4 2223/2 0 0 i /2 0 i /2

§

.

Let us now discuss the physical significance of the dynami-gL/2. The last two eigenvectors,c7 and c8 , describe the
of
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cal variables corresponding to the eigenvectorsck .
The eigenvectorc0 describes the stationary excitation

a system by two laser fields of equal intensity acting on
1↔3 and 2↔3 transitions, respectively. The eigenvecto
c1 and c2 describe a two-dimensional stationary excitati
space, a combination of the polarization of the ground s
and the populations of all three levels. The eigenvectorsc3

andc6 describe excitation which involves a combination
the populations of the subsystems of the lower levels and
independent combination of the polarizations 1↔3% 2↔3;
they oscillate at half the Rabi frequency,gL/2. The eigen-
vectorsc4 and c5 describe excitations which are a comb
nation of three polarizations~1↔2 and an independent com
bination 1↔3% 2↔3! which also oscillate at a frequency o
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excitation of the bound state together with the populations
all three levels and the polarization of the ground state,~all!
oscillating at a frequency ofgL . Therefore, the Rabi nuta
tions of the eigenexcitations of the system for combinatio
of the unbound levels take place at a frequency ofgL/2,
while the bound states oscillate at a frequency ofgL . ~See
Eq. ~A5!!.

Using Eq. ~13! for the nutation operatorLP , we can
average the LiouvillianLd1Lr in Eq. ~1! over the nutations
and write it in the form of a sum of 333 matrices, two 232,
and two 131. ~The last two are diagonal elements.! As a
result, we can obtain a simplified expression for the last th
terms in Eq.~1!, which describe the overall dynamics of th
system in the interaction representation, of the form

83Grishanin et al.



nly
LRWA5S 2~G131G23!/2 0 0

0 2G12/2 2~g1g81G12!/2&

0 2G12/2& 2~g1g81G12!/4
D

% S 2~g121w!/22G13/42G23/42 igL/2 2 ids/2

2 ids/2 2G12/22G13/42G23/42 igL/2D
% S 2G12/22G13/42G23/41 igL/2 ids/2

ids/2 2~g121w!/22G13/42G23/41 igL/2D
% ~23g/823g8/82G12/82G13/42G23/42 igL!

% ~23g/823g8/82G12/82G13/42G23/41 igL!,

where the total detuning isds52d1dR5vL1vL82v13 The preceding analysis shows that in a strong field o
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2v23. The corresponding eigenvalues are given by

$lk%55
0

2~g1g813G12!/4
2~G131G23!/2

m1

m2

m1*

m2*
~23g23g82G1222G1322G2328igL!/8
~23g23g82G1222G1322G2318igL!/8

6 ,

~14!

where

m1,25
1

4
@2g122w2G126 iA4ds

22~g121w1G12!
2

2G132G2322igL#.

Here g12 and w are the rates of relaxation and pumping
the lower level system,G12 is the dephasing rate in this sy
tem, g and g8 are the rates of relaxation from the excite
states, andG13 and G23 are the corresponding dephasin
rates.

Let us now discuss the eigenvalueslk in detail.
Note that because the relaxation operator is not s

adjoint, each eigenvalue corresponds to two eigenvec
one of which describes the operators acting on the phys
variables, while the other describes the density matrix. T
eigenvaluel050 corresponds to the stationary stater̂st

→^0u and the operatorÎ→u0&, which has no dynamical sig
nificance. This eigenvalue determines the coherent line in
fluorescence spectrum. The eigenvaluesl1,2 describe the
nonoscillatory dynamics of the system and determine
Rayleigh scattering of the fields which excite the syste
The four eigenvaluesl3,4,5,6determine oscillations at half th
Rabi frequencygL/25g/& and describe the contribution o
field-induced resonances to the fluorescence spectrum.
last two eigenvaluesl7,8 determine oscillations at the Rab
frequencygL and describe the ordinary 1↔3 and 2↔3 nu-
tations in the weak-field limit.
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quencies of the system, and not the Raman detuningdR .
Here ford50, relaxation in the system of lower levels do
not contribute to the oscillations at half the Rabi frequen

m1,252G13/42G23/42 igL/2.

This effect can, in principle, be used to study the contrib
tion of the lower level system to the fluorescence spectrum
an experiment where the spectra are measured as a fun
of the detuningd for different intensities of the laser line
The measured width of the spectral components locate
half the Rabi frequency is then determined directly by t
relaxation rate in the lower level system.

For the case of an exact resonance (d,dR50), we can
obtain an analytic expression for the fluorescence spect
in the rotating wave approximation. The major differen
compared to the spectra from two independent two-level s
tems, however, is that in the case of theL-system the genera
coefficient in Eq.~11!, which determines the intensity of th
spectral components, differs from the corresponding coe
cient for the case of a two-level atom, which is simply pr
portional tog. In coherent population trapping, this coeffi
cient for a L-system and, therefore, the intensity of th
spectral components decrease by roughly a factor ofG12/g,
which is a small parameter. For the cesium atom,12 as an
example, it is'1.631023, while for sodium2 it can be es-
timated to be'4.931023 using published parameters.13

3.2. Fine structure of the fluorescence spectrum

For simplicity let us again consider the case of an ex
resonance. Using the equations from Sec. 3.1 together
Eq. ~12!, we obtain the following expressions for the coef
cientsck in front of the exponential factors:

c05
g2/G12

2

A~312g/G12!
3

, c15
9

8

112g/G12

A~312g/G12!
3

,

c2,3,550, c4,65
1

4

11g/G12

A312g/G12

,

84Grishanin et al.



or
m

a
ig
f

r

l
n

u
io
re
o

on

e
e

Isolating the contribution toŝ13
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c7,85
1

16

1

A312g/G12

, ~15!

These coefficients multiplied by the common fact
ggL

2 /4v12
2 determine the intensity of the fine structure co

ponents of the fluorescence spectrum~12!.
The complete fluorescence spectrum of aL-system, in-

cluding the structure in the rotating wave approximation
well as the fine structure calculated above, is shown in F
4. Equation~15! implies that for the typically large values o
the ratiog/G12 only the coefficientsc0 andc45c6 are pro-
portional to the large values of orderAg/G12. As a result,
only three lines show up in each of the two fine structu
features of the fluorescence spectrum~Fig. 4!. One of them is
coherent~i.e., has zero width! with an intensity proportiona
to c0 , while the other two are broadened lines with an inte
sity proportional toc4 shifted to the left and right of the
coherent line at half the Rabi frequencygL/2.

4. EFFECT OF FOUR-PHOTON INTERACTIONS ON
COHERENT POPULATION TRAPPING

Using Appendix B we can easily calculate the contrib
tion to the relaxation of the ground state from the relaxat
contributions of the dipole transitions. The nature of the
laxation processes involves an interaction of the dipole m
ments of the 1↔3 and 2↔3 transitions with the vacuum
fluctuations of the electromagnetic field. These interacti
are described by the Hamiltonian

Ĥj5
\

2 ~ ĵ1
2ŝ13

1 1 ĵ2
2ŝ23

1!1H.c., ~16!

where

ĵ1
25

1

\ E d13~r !Ê0~r !, ĵ2
25

1

\ E d23~r !Ê0~r !

are the components of the vacuum electromagnetic fi
Ê0(r ) with negative frequency amplitudes integrated ov
the spatial distributiondk3(r ) of the dipole moments
(k51,2).

FIG. 4. The resonance fluorescence spectrum of aL-system ~the 2S1/2

→2P3/2 transition in the cesium atom! excited by two intense laser field
into a coherent population trapping state.
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photon interactions outside the range of applicability of t
rotating wave approximation, we can write Eq.~16! in the
form

Ĥj5Ĥj
01Ĥj

4ph ,

Ĥj
4ph5

\

2
~ ĵ1

2dS0ŝ13
1 1 ĵ2

2dS0ŝ23
1 !1H.c.,

where Ĥj
0 determines the standard interaction,Ĥj

4ph de-
scribes the additional contribution owing to four-photon i
teractions, anddS0 is the four-photon contribution to the
dynamic transformation of theL-system. Using the final for-
mulas of Appendix B for the transformed operatorsŝ13

1 and
ŝ23

1 , we obtain the following formula for the four-photo
contribution to the Hamiltonian:

Ĥj
4ph5

gL

2D

\

2
$ĵ1

2@ t̂,ŝ13
1 #exp@2 i ~vL2D!t#

1 ĵ2
2@ t̂1,ŝ23

1 #exp@2 i ~vL81D!t#%1H.c. ~17!

By calculating the commutators in Eq.~17!, we can write
down the four-photon contribution with the aid of the tra
sition operators for the low level subsystem as

Ĥj
4ph5

\

4D
$g8ĵ1

2~ t !exp@2 i ~vL2D!t#ŝ12
2

1gĵ2
2~ t !exp@2 i ~vL81D!t#ŝ12

1 %1H.c. ~18!

This implies that the vacuum electromagnetic field intera
with the lower level subsystem through four-photon pr
cesses. The efficiency of this interaction depends on the
teraction constant of the laser fields with the dipole tran
tions of the L-system. The distinctive feature of thi
interaction is that the emission of a vacuum photon by
1↔3 transition is accompanied by the absorption of a 1↔2
transition photon, while the emission of a vacuum photon
the 2↔3 transition is accompanied by the emission of
1↔2 transition photon. Conservation of energy in these p
cesses is ensured by the four-photon interaction of
vacuum field with the laser fields, and this is reflected in
exponential terms in Eq.~18!.

Following Ref. 10, we can write the relaxation operat
for the low level subsystem, which corresponds to Eq.~18!,
in its customary form in terms of the operator bas

$n̂1 ,n̂2 ,ŝ1 ,ŝ2%:

L12

5S 2g12 g12 0 0

w12 2w12 0 0

0 0 2~g121w12!/2 0

0 0 0 2~g121w12!/2

D ,
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whereg12 is the relaxation rate of the lower level subsystem. Given that the termg8ĵ1
2ŝ12

2 in Eq. ~18! describes a relaxation
2 1 ing

nce
transition from level 1 to level 2 and the termgĵ2 ŝ12 describes a transition in the opposite direction, we obtain the follow
expression for the relaxation owing to the contribution of four-photon processes:

L12
4ph5

gL
2

4D2 S 2c2g13 c2g13 0 0

c82g23 2c82g23 0 0

0 0 2~c2g131c82g23!/2 0

0 0 0 2~c2g131c82g23!/2

D , ~19!

wherec5g/gL , c85g8/gL , andc21c8251. When the contribution of four-photon processes to resona
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Equation ~19! implies that the contribution of four
photon processes to the relaxation rate constant of the lo
level subsystem,G12 is given by

G12
4ph5

gL
2

8D2 ~c82g131c2g23!'
gL

2

4D2 g13/2.

This contribution leads to a fundamental lower bound
G12. As an example, for the Cs atom and laser field inten
ties of ;1 W/cm2, we haveG12

4ph;1023g13/2'104 s21.

5. THE ROLE OF FOUR-PHOTON INTERACTIONS IN THE
FORMATION OF AN ABSORPTION RESONANCE
AND DISPERSION

The simplest experimental possibility for observing t
dark resonance is to measure the transmission and/or di
sion ~in atomic vapor! of exciting laser waves, whose inde
pendent detection is made easier by the relatively large
ferenceD of the corresponding frequenciesvL andvL8 in the
neighborhood of the resonance:D@G. The real and imagi-
nary parts of the corresponding refractive indices are
pressed in an obvious way in terms of the operators for
corresponding dipole transitions~assuming that macroscop
volume averaging is valid! as

nk95
\cgkN0

I k
Im^uk&^3u&, ~20!

and

nk8215
\cgkN0

I k
Rê uk&^3u&, ~21!

wheregk and I k are the corresponding Rabi frequencies a
intensities of the fields, withk51 corresponding to fre-
quencyvL and k52 to vL8 ~here g15g and g25g8!. To
calculate Eqs.~20! and ~21! in the stationary case it is nec
essary to find the stationary density matrix in the rotat
wave approximation; this matrix is represented by the co
sponding zero eigenvector^0u determined from the equatio

^0uLRWA50.
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dephasing is taken into account, the relaxation operato
the expression forLRWA must include the field-dependen
correction~19!. Then the results of averaging in Eqs.~20!
and ~21! with a natural choice of basis for the vector repr
sentation of the density matrix~see Appendix A1! are de-
scribed simply by the corresponding components of the v
tor ^0u.

Performing the corresponding analytic calculations a
expressing the concentration of active atoms in terms of
pressurep, we obtain

nk821520.0289pl3
g̃ 2

g̃ k
2 n3F d̃2

~ g̃ 1
22g̃ 2

2!G̃12d̃1g̃ L
2 d̃R

g̃ L
2 G̃1214G̃12

2 14d̃ R
2 G ,

~22!

and

nk950.0289pl3
g̃ 2

g̃ k
2 n3 . ~23!

Heren3 describes the population of the excited state cal
lated according to the formula

n35F31
2g̃g̃ L

2

g̃ 1
2g̃ 2

2 ~11 d̃ 2!1
g̃

2

3
g̃ L

4 G̃121g̃L
6 /42~ g̃ 2

22g̃ 1
2!2G̃12d̃

212g̃ L
2 ~ g̃ 2

22g̃ 1
2!d̃Rd̃

g̃ 1
2g̃ 2

2~ d̃ R
21G̃12

2 1G̃12g̃ L
2 /4!

21,

where the tilde means that the corresponding variables
normalized toG. The argumentsd and dR depend on the
velocity of the atom owing to the single-photon and resid
Doppler effect, while the dampingG12 in the lower level
system is determined by the reciprocal time of flight of t
atom~for a cuvette with pure vapor!. Thus, in order to obtain
computational data which model the experimental situati
Eqs.~22! and ~23! must be averaged over a Maxwellian v
locity distribution, which is done numerically.

Figure 5 shows calculated resonance absorption cu
for 2S1/2→2P3/2 transitions in cesium and potassium for i
tense pump and weak probe fields. Although four-pho
dephasing is not very important for cesium, in the case
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FIG. 5. Absorption resonances in cesium~a!
and potassium~b! vapor including~smooth
curve! and neglecting~dotted line! four-
photon dephasing. The dot-dashed curve
Fig. a corresponds to a calculation takin
four-photon dephasing into account whe
the separation between the lower levels w
specially reduced by a factor of 10. The fiel
intensities in the calculations were
I 150.01 mW/cm2 and I 2510 mW/cm2.
potassium, for which the splitting of the ground state for the
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isotope 41K is only 0.25 GHz, i.e., almost two orders o
magnitude smaller than the splitting in cesium, with a pu
field intensity of 10 mW/cm2 the resonance in the absence
a magnetic field is essentially unobservable. Thus, the fo
photon mechanism for dephasing of theL-resonance estab
lishes a fundamental limit of ‘‘observability’’ for the absorp
tion resonance in strong fields, by imposing a limit either
the pump field intensity or on the magnitude of the splitti
in the ground state.

6. CONCLUSION

Four-photon interactions, therefore, play a fundamen
role in the formation of fluorescence spectra, as well as of
absorption spectra and/or dispersion of a resonanceL-system
during coherent population trapping.

A typical arrangement of a possible experiment for d
tecting a resonance fluorescence spectrum employing
atomic beam is shown in Fig. 1b. Experiments of this s
using an atomic beam and an atom trap have been desc
in detail by Gauthieret al.14 and Stalgieset al.,15 respec-
tively. The directions of the atomic and laser beams are c
sen to be mutually perpendicular so as to avoid the ordin
Doppler effect. The fluorescence spectrum is analyzed wi
Fabry-Perot interferometer. Calculations for the fluoresce
spectrum of two-level atoms show that for an atomic be
with 109 atoms/s•mm2, using a 5-millimeter Fabry-Pero
cavity with Q;104 one can expect more than 105 photons/s
from a volume of diameter;100mm. For aL-system, four-
photon interactions, on one hand, reduce the fluoresce
intensity relative to that of a two-level atoms by a factor
(gL/2v12)

2, and, on the other, increase it by a factor
(g/G12)

1/2. As an example, for the Cs atom a saturation
tensity of 1.1 mW/cm and the corresponding parame
gL5102g are already achieved for a laser power of 30 m
at a wavelength of 852 nm focussed into a spot with a dia
eter of about 1 mm. For these experimentally easily reali
parameters, we may expect, as the calculations show, a
duction in the scattering intensity of theL-system compared
to two-level atoms by a factor of 23103 and, therefore, to
detect fewer than;100 photons/s, which is not a proble
for modern detection systems.

The authors thank D. N. Klyshko, A. Schentzle, and
Wynands for fruitful discussions. One of the autho
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APPENDIX A

Dynamic superoperator of a L-system

Let us consider aL-configuration of the quantum me
chanical levels of an atom~Fig. 1! acted on by two laser
fields with frequencies close to a Raman resonance whic
described by a Hamiltonian of the form

ĤL5Ĥa1Ĥ I , ~A1!

where

Ĥa52\v12u2&^2u1\v13u3&^3u

is the intrinsic Hamiltonian of the atom~the energy of level
1 is taken to be zero, so that the projection operatoru1&^1u is
absent in the Hamiltonian! and

Ĥ I5\g cos~vLt1w!~ u1&^3u1u3&^1u!1\g8

3cos~vL8 t1w8!~ u2&^3u1u3&^2u!

is the Hamiltonian of the interaction of the atomic syste
with two light fields having frequenciesvL andvL8 , includ-
ing the dependence of the excitation on the phase of the fi
The interaction constants, i.e., the Rabi frequencies, dep
on the amplitudesAvL

andAv
L8

of the external field an on the

dipole matrix elementsd13 andd23:

g5
1

\
d13AvL

, g85
1

\
d23Av

L8
. ~A2!

Only the case when a single-photon resonance is pre
is of interest, i.e., whenvL andvL8 are close, respectively, to

v13 andv23. We can rewriteĤa in the form

Ĥa5Ĥ01Ĥd , ~A3!
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where the ‘‘unperturbed’’ Hamiltonian
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u2&5gL
21~geiwuc&2g8e2 iw8un&),
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Ĥ05\~vLu3&^3u2Du2&^2u!, ~A4!

including the biharmonic frequency detunin
D5vL82vL'v12, describes free precession with the tw

laser frequencies. The ‘‘perturbing’’ HamiltonianĤb can be
written in the form

Ĥd52\du3&^3u1\dRu2&^2u,

where

d5vL2v13, dR5vL82vL2v12

describe the single-photon detuning for theu1&→u3& transi-
tion and the two-photon Raman detuning, respectively. B
detunings can be zero with a suitable choice of laser frequ
cies.

The dynamics of an atomic system with the Hamiltoni
~A3! can be characterized as a combination of fast~owing to

Ĥ0! and slow~owing to Ĥd! precessions, so it is appropr
ate to shift to a representation of the interaction with
unperturbed unitary transformation

U0~ t !5expF2
i

\
Ĥ0t G .

In the rotating wave approximation6 we can neglect the rap
idly oscillating terms, so that the Hamiltonian~A1! takes the
form

ĤL5Ĥd1Ĥp5\@2du3&^3u1dRu2&^2u1~gL/2!~ uc&

3^3u1H.c.!] ~A5!

and is the effective Hamiltonian in this approximation. He
we have introduced the bound state (uc&) and the unbound
state (un&) orthogonal to it:

uc&5gL
21~ge2 iwu1&1g8e2 iw8u2&),

un&52gL
21~g8e2 iwu1&2ge2 iw8u2&). ~A6!

The stateuc& is associated with excitation of the levele with
an effective coupling constant ofgL5Ag21g82. For zero
Raman detuning (dR50), it is easy to see that the Hami
tonian ~A5! describes a two-level system. This can be de
onstrated most clearly by substituting the expressionu2&^2u
corresponding to the inverse transformation~A6! in Eq.
~A5!:

u1&5gL
21~g8eiw8uc&1ge2 iwun&),
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which leads to the result

ĤL5\F S d1
dRg2

gL
2 D uc&^cu1S d1

dRg82

gL
2 D un&^nuG

1\dR

gg8

gL
2 [ei ~w2w8!uc&^nu1H.c.]

1
\gL

2
(uc&^3u1H.c.).

In the basis$u3&,uc&,un&% the corresponding matrix has th
form

ĤL5S 0 \gL/2 0

\gL/2 \d 0

0 0 \d
D

1
\dR

gL
2 S 0 0 0

0 g2 gg8ei ~w2w8!

0 gg8e2 i ~w2w8! g82
D

and, for dR50, can quickly be expanded in terms of th
232 matrix of a two-level system ‘‘dressed’’ with th
atomic field and the 131 matrix of a single unbound state
i.e., the excited and bound states form an effective two-le
system ue& % uc&. For simplicity we redefine u1& as
exp(2iw)u1& and u2& as exp(2iw8)u2&, so that we can rewrite
Eq. ~A6! in the form

uc&5gL
21~gu1&1g8u2&), un&52gL

21~g8u1&2gu2&),

which does not contain the phase factors explicitly.
With this representation of the Hamiltonian in the rota

ing wave approximation, the corresponding dynamic part
the Liouvillian has the form

LL5
i

\
@ĤL ,(#. ~A7!

The complete LiouvillianLRWA also contain a relaxation
operator which is specified phenomenologically here.

A1. Transformation of the Liouvillian in the rotating wave
approximation

The initial representation of the Liouvillian in the rota
ing wave approximation is a matrix in the nonhermitian ba

$êk%5 P̂a,b5ua&^bu, where k5(a,b) and a,b51,2,3,
which can be represented by the following complex mat
elements using Eqs.~A7!:
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l
d

LRWA5

¨

2g2g8 g g8 0 0 2
ig

2

ig

2
2

ig8

2

ig8

2

0 2g12 g12 0 0
ig

2
2

ig

2
0 0

0 w 2w 0 0 0 0
ig8

2
2

ig8

2

0 0 0 idR2G12 0
ig8

2
0 0 2

ig

2

0 0 0 0 2 idR2G12 0 2
ig8

2

ig

2
0

2
ig

2

ig

2
0

ig8

2
0 2 id2G13 0 0 0

ig

2
2

ig

2
0 0 2

ig8

2
0 id2G13 0 0

2
ig8

2
0

ig8

2
0

ig

2
0 0 2 id2G23 0

ig8

2
0 2

ig8

2
2

ig

2
0 0 0 0 id2G23

©

.

For converting to the more convenient Hermitian bases, we can introduce two transformationsVc andVc1 of the form

Vc51
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 g/gL 0 g8/gL 0

0 0 0 0 0 0 g/gL 0 g8/gL

0 0 0 0 0 2g8/gL 0 g/gL 0

0 0 0 0 0 0 2g8/gL 0 g/gL

2 ,

Vc151
1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1/& 1/& 0 0 0 0

0 0 0 2 i /& i /& 0 0 0 0

0 0 0 0 0 1/& 1/& 0 0

0 0 0 0 0 2 i /& i /& 0 0

0 0 0 0 0 0 0 1/& 1/&

0 0 0 0 0 0 0 2 i /& i /&

2 . ~A8!

The transformationVc introduces two pairs of polarization operatorsP̂c ,P̂c
1 and P̂n ,P̂n

1 for transitions to the excited leve
from the bound and unbound states, whileVc1 introduces the Hermitian cosine-sine operators~analogs of the coordinates an
momenta or the Pauli matricesŝ1 , ŝ2 in a two-level system!:

q̂g5~ P̂121 P̂21!/&, p̂g52 i ~ P̂122 P̂21!/&,

q̂c5~ P̂c1 P̂c
1!/&, p̂c52 i ~ P̂c2 P̂c

1!/&,

q̂n5~ P̂n1 P̂n
1!/&, p̂n52 i ~ P̂n2 P̂n

1!/&. ~A9!

Here the subscriptsg, c, andn correspond to the ground (1↔2!, bound (c↔3), and unbound (n↔3) subsystems.
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After applying the transformations~A8! to the Liouvillian LRWA in the rotating wave approximation, for the transformed
21 21

it

e

operatorLRWA5Vc1VcLRWAVc Vc1 we obtain

LRWA5

¨

2g2g8 g g8 0 0 0
gL

&

0 0

0 2g12 g12 0 0 0 2
j2gL

&

0
jhgL

&

0 w 2w 0 0 0 2
h2gL

&

0 2
jhgL

&

0 0 0 2G12 2dR 0 2jhgL 0 2~j22h2!
gL

2

0 0 0 dR 2G12 0 0 2
gL

2
0

0 0 0 0 0 2Gc d DG 0

2
gL

&

j2gL

&

h2gL

&

jhgL 0 2d 2Gc 0 DG

0 0 0 0
gL

2
DG 0 2Gn d

0 2
jhgL

&

jhgL

&

~j22h2!
gL

2
0 0 DG 2d 2Gn

©

, ~A10!

where we have used the following notation

j5g/gL , h5g8/gL ,

Gc5j2G131h2G23, Gn5h2G131j2G23,

DG5jh~G132G23!.

The block structure of the transformed dynamic superoperatorLRWA indicated by the continuous lines in Eq.~A10! is
discussed in more detail in Appendix A2.

As opposed to the initial complex representation, the transformed operatorLRWA has real matrix elements, since
corresponds to the Hermitian basis$êk%.

For a symmetricL-system, withG135G23, g5g8, and, therefore,DG50 andj5h, Eq. ~A10! takes the form

LRWA51
2g2g8 g g8 0 0 0 gL /& 0 0

0 2g12 g12 0 0 0 2gL/2& 0 gL/2&

0 w 2w 0 0 0 2gL/2 0 2gL/2&

0 0 0 2G12 2dR 0 2gL/2 0 0

0 0 0 dR 2G12 0 0 2gL/2 0

0 0 0 0 0 2G d 0 0

2gL /& gL/2& gL/2 gL/2 0 2d 2G 0 0

0 0 0 0 gL/2 0 0 2G d

0 2gL/2& gL/2& 0 0 0 0 2d 2G

2 .

A2. The block structure of the dynamic superoperator in the tion variables~A9!. By analogy, the matrix blocks can b

rotating wave approximation

ing

za

-

The physical significance of the superoperatorLRWA de-
fined by Eq.~A10! becomes most transparent on examin
its block structure. It is convenient to break the matrix~A10!
up into blocks in accordance with a definite set of polari
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numbered with a subscriptp corresponding to the popula
tions and by the subscriptsg, c, andn corresponding to the
polarizations of ground (1↔2), bound (1↔3), and un-
bound (1↔2) subsystems. In this notation, the matrix~A10!
appears as
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where the perturbation Liouvillian has the form
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LRWA5S 0 Lgg 2Lcg
T 2Lng

T

Lcp Lcg Lcc 2Lnc
T

Lnp Lng Lnc Lnn

D . ~A11!

It consists of nine nonzero independent blocks. The diago
block Lpp describes the dynamics of the populationsn3 , nc ,
andnn , and the blocksLgg , Lcc , andLnn , the polarization
dynamics, respectively, of the ground state and of the bo
and unbound subsystems. The five nonzero nondiagonal
trices describe the dynamics of theL-system owing to cou-
pling among the above basis variables. The antisymmetr
these five blocks is a consequence of the purely oscilla
character of the dynamics resulting from the interaction w
the external field, while the inner dynamics includes rela
ation so it is also represented by the matrix elements wh
yield nonzero real components in the eigenvalues of the
trix LRWA.

It is easy to see from the block structure of~A11! that
there is no connection between the populations and pola
tions of the ground state, sinceLgp50. This reflects the fac
that the exciting field acts directly only on transitions into t
excited state, while single-photon excitation of the grou
state is absent.

The block representation given here for the dynamic
peroperator in the rotating wave approximation is conven
for qualitative discussions of the effect of the parameters
the L-system on its dynamics, since it reduces to change
only the inner structure of the blocks in the representat
~A11!.

APPENDIX B

Superoperator calculation of the general formula for the
fine structure of the spectrum

Let us calculate the two-time correlation function~10!
that determines the atomic fluorescence spectrum:

K ~t!5^r̂0S~0,t !uŝ2~ t !@S~ t,t1t!ŝ1~ t1t!#&. ~B1!

Here the total evolution superoperator~see Eq.~2!! has the
form

S~0,t !5SRWA~ t !S̃0~ t !, ~B2!

whereSRWA(t) is the superoperator in the rotating wave a
proximation andS̃0(t) is the superoperator for the perturbe
evolution owing to the nonresonant interaction. The super
eratorS̃0(t) describes the transformation of an initial syste

HamiltonianĤ(t) of the form

Ĥ~ t !→Ĥ01dĤ~ t !5Ĥ01
\gL

2
~ t̂eiDt1 t̂1e2 iDt!,

~B3!

where the operatort̂ is defined by Eq.~9!. In first-order
perturbation theory we can introduce a superoperatorS̃0(t),
corresponding to the Hamiltonian~B3!, in the form

S̃0~ t !5S0~ t !1dS0~ t !5S0~ t !1E
0

t

dLp~t!dtS0~ t !,
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dLp~t!5
i

\
@dĤ~t!,(#. ~B4!

IntegratingdS0(t) with respect tot and using Eq.~B4!
together with Eq.~B3!, we obtain

dS0~ t !5
gL

2D
@t̂eiDt2 t̂1e2 iDt,(#S0~ t !, ~B5!

which describes oscillations at a frequencyD.
The superoperatorS0(t) in Eq. ~B5! describes the unper

turbed dynamics represented by the Hamiltonian~A4!, which
accounts for the free precession of all theL-system transi-
tions. The latter is represented in the form

S0~ t !5S12
1 e2 iDt

% S12
1 eiDt

% S13
1 e2 ivLt

% S13
1 eivLt

% S23
1 e2 ivL8 t

% S23
1 eivL8 t

% P0 , ~B6!

where the matricesSkl
6 for the corresponding superoperato

are the one-dimensional eigen-projectors on the corresp
ing intrinsic precession of the variables andP0 is the projec-
tor on the three-dimensional subspace of the nonoscilla
variables, i.e., the populations. After substituting Eq.~B6! in
Eq. ~B5!, we obtain

dS0~ t !5
gL

2D
$@t̂,(#S13

1 exp@2 i ~vL2D!t#

2@ t̂1,(#S23
1 exp@2 i ~vL81D!t#

2@ t̂1,(#S13
2 exp@ i ~vL2D!t#

1@ t̂,(#S23
2 exp@ i ~vL81D!t#%. ~B7!

Then substituting Eq.~B7! into Eq. ~B2! and using Eq.
~B1! together with the relationr̂0S(0,t)→^0u for t→` be-
cause of the damping of all the eigen-oscillations cor
sponding to the nonzero eigenvalues, we can finally write
correlation function in the form

K ~ t,t1t!5^0udS0~ t !ŝ2
•exp~LRWAt!dS0~ t1t!ŝ1&,

~B8!

where the symbol ‘‘• ’’ denotes the product of transforme
operators ands65s13

6 1s23
6 is the sum of the complex am

plitudes oscillating at the optical frequencies.
If we then applydS0 to ŝ6 and recall thatŝ13

6 and ŝ23
6

are eigenvectors for the eigen-projectorsS13
6 and S23

6 , we
obtain

dS0~ t !ŝ252
gL

2D
$@t̂1,ŝ13

2 #exp@ i ~vL2D!t#

1@ t̂,ŝ23
2 #exp@ i ~vL81D!t#, ~B9!

and

dS0~ t1t!ŝ15
gL

2D
$@t̂,ŝ13

1 #exp@2 i ~vL2D!~ t1t!#

1@ t̂1,ŝ23
1 #exp@2 i ~vL81D!~ t1t!#%,

~B10!
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1↔3 and 2↔3 transitions witht̂ and t̂ are given by

@t1,ŝ13
2 #52

ŝ12
2

A2
, @t,ŝ23

2 #52
ŝ12

1

A2
,

@t,ŝ13
1 #5

ŝ12
1

A2
, @t1,ŝ23

1 #5
ŝ12

2

A2
.

After substitution of Eqs.~B9! and ~B10! in Eq. ~B8! and
leaving out terms which oscillate relative tot, with the dy-
namical representation in the rotating wave approximation
terms of the eigenvectors and corresponding eigenvalues
~B8! finally takes the form of Eq.~12!.

APPENDIX C

Transformation of the time evolution superoperator in the
rotating wave approximation

For a L-system with a time-independent Hamiltonia

Ĥ, the time evolution superoperator is unitary and is giv
by an exponentialS (t)5exp(LHt) with a purely dynamic
Liouvillian of the type~A7! and can be written in the form

L~ t !5U~ t !(U21~ t !5(
a,b

exp@2 i ~va

2vb!t#ua&^au(ub&^bu, ~C1!

where theva and ua& are the Bohr eigenfrequencies and t
corresponding eigenvectors of the Hamiltonian, while
unitary transformationU(t) is specified by the relation

U~ t !5expF2
i

\
Ĥt G .

Subsequently, we can use the interaction representa
for the superoperatorLH1L r , which differs from the
purely dynamical Liouvillian corresponding toS (t) in that it
includes the relaxation superoperatorLr , and treatLH as
the Liouvillian for the unperturbed time evolutionS (t). In
the interaction representation the time dependent relaxa
superoperator has the form

L r
I ~ t !5 (

a,b;m,n
exp$ i @~va2vb!2~vm

2vn!#t%Lab,mnua&^mu(un^bu, ~C2!

where

Lab,mn5 (
k,l ;m,n

^auk&^ l ub&Lkl,mn̂ mum&^nun&

denotes the matrix elements of the relaxation superoper

in terms of the eigen-basis of the HamiltonianĤ.
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oscillations in Eq.~C.2! are fast compared to the rates of a
the relaxation processes, so that it is possible to average
these oscillations. Then the resulting effective~‘‘reduced’’!
relaxation operator has the form

Lre5(
a,b

Laa,bbua&^bu(ub&^au

1 (
aÞb

Lab,abua&^au(ub&^bu, ~C3!

where it is assumed that all the frequenciesvab correspond-
ing to theb→a atomic transitions (aÞb) are different. The
first term in Eq.~C.3! describes the relaxation of the pop
lations owing to b→a transitions from other levels (b
Þa) and radiative decay (b5a). The second term de
scribes the relaxation of the polarization variables. The c
responding matrix isn3n, where n53 is the number of
levels in aL-system.

The superoperator~C3! commutes with the dynamica
Liouvillian, since they have an eigenbasis in common. Giv
this circumstance, the relaxation of the atomic oscillations
simply described by the corresponding damping rates

Gab52Re Lab,ab .

If these quantities are all nonzero, then the stationary~zero-!
vector ^r̂stu has nonzero components only in population
laxation space and is actually described by then-component
zero-vectorra

st of the n3n submatrixLaa,bb .
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