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Abstract—A universal theory for calculating coherent population trapping resonances in multilevel atoms is
suggested. The theory allows arbitrary schemes of multilevel atoms and their excitations to be calculated tak-
ing into account the influence of relaxation effects in atoms, applied magnetic field, and the Doppler effect.
The experimental data obtained by high-precision diode spectroscopy of coherent dark resonances in samar-
ium vapor are systematically analyzed using the suggested theory. In the absence of a magnetic field, the model
of samarium is based on consideration of a degenerate Λ system of the 4f 66s2(7F0) 

4f 6(7F)6s6p(3P0)9   4f 66s2(7F1) active transitions. If the fourth 4f 66s2(7F2) level is taken into account,
this Λ system becomes open. Numerical simulation of coherent population trapping resonances shows that the
open character of the system decreases the contrast of resonance curves in absorption spectra without changing
resonance widths. The system under applied external longitudinal and transverse magnetic fields is correctly
described by 7- and 12-level models of atomic transitions, respectively. © 2003 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The interaction of an electromagnetic field with an
atom is one of the most fundamental problems of quan-
tum optics. Multilevel atoms are known to exhibit a
broader spectrum of effects under these conditions than
two-level atoms because of field-induced coherence
between atomic states and quantum interference.
Three-level systems in the Λ, Ξ, and V configurations
play an important role in studying these effects, being
intermediate in complexity between two-level and mul-
tilevel atoms. Quite a number of new effects are
observed in three-level atoms, of which coherent popu-
lation trapping is one of the most intriguing phenom-
ena. This phenomenon has been extensively studied
both theoretically and experimentally (see review [1]
and the references therein). The coherent population
trapping effect most strikingly manifests itself in three-
level systems with two closely spaced long-lived levels
and the third level distant from them (Λ or V systems),
which are excited by two continuous laser fields in such
a way that the distant level is optically “coupled” with
two others. Tuning the exciting fields in resonance with
dipole transitions results in system population trapping
in the coherent superposition of two closely spaced lev-
els. This effect manifests itself in Raman absorption
spectra as a very narrow dip against the absorption line
background and in resonance fluorescence spectra as
1063-7761/03/9604- $24.00 © 0629
the absence of emission, whence the term “dark (or
coherent population trapping) resonance.”

The coherent population trapping phenomenon is
currently extensively used in various applications, such
as magnetometry, metrology, etc. [2–6]. Since the first
observation of a coherent population trapping reso-
nance in sodium vapor [2], the majority of experimental
studies of coherent population trapping resonances
have been performed with alkali metal atoms [1, 7],
whose hyperfine ground state components with charac-
teristic splittings of several GHz were used as the lower
Λ system levels. The long lifetimes of the coherent
superposition of the lower alkali metal atom states
allow high-contrast and high-Q coherent population
trapping resonances to be recorded thanks to the avail-
ability of stable high-precision laser systems tunable in
resonance transition regions and comparatively simple
phase locking of exciting light fields. For instance, res-
onances about 10 kHz wide were recorded for pure
cesium vapor [7]. A further decrease in the width of res-
onances can be achieved by introducing an inert buffer
gas (Ne, He, or Ar) into the cell for measurements at
pressures of several kPa. The residence time of atoms in
light beams then increases without disturbing coher-
ence of the superposition state of the lower levels,
which are weakly dephased by collisions with buffer
gas atoms. In particular, the narrowest resonance about
2003 MAIK “Nauka/Interperiodica”



630 VLADIMIROVA et al.

                    
            

50 Hz wide was obtained for cesium–neon combina-
tions [7].

Coherent population trapping in rare-earth metal
atoms has certain special features, because the charac-
teristic distance between fine structure components
used as the lower 

 

Λ

 

 system levels is substantially larger
than the hyperfine splittings of alkali metal ground
states and amounts to 10–100 THz. The characteristic
spontaneous decay time of these levels is determined by
magnetic dipole transitions and equals several seconds,
which does not prevent the observation of supernarrow
resonances. These levels are also weakly sensitive to
atomic collisions, because they are well shielded by the
outer closed shell. For this reason, rare-earth metal
atoms also offer promise for use in metrological appli-
cations, for instance, for creating a secondary fre-
quency standard (e.g., see [8]). The samarium atom is
one of the most promising objects for metrological
applications. Its scheme of levels is much simpler than
that of cesium, especially in applied magnetic fields.
Precisely for this reason, we selected it as a “touch-
stone” for testing the general theory of coherent popu-
lation trapping in multilevel atoms developed by us.

Theoretically, the coherent population trapping
phenomenon was studied in detail for the three-level
model [1], which allows calculations to be performed
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Fig. 1. Scheme of a three-level atom in the Λ configuration
excited by two laser fields at frequencies ωL1 and ωL2. Ω13
and Ω23 are the Rabi frequencies corresponding to pumping
fields; δL is the resonance detuning at the |1〉  |3〉  tran-
sition; δR is the Raman detuning; γ31 and γ32 are the rates of
radiative decay of excited states to the |1〉  and |2〉  levels,
respectively; γ21 and w12 are the rates of decay and thermal
pumping of level |1〉  through |2〉; and Γ13, Γ23, and Γ12 are
the rates of dephasing of transitions |1〉  |3〉 , |2〉 
|3〉 , and |1〉  |2〉 , respectively.
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analytically. The model, however, becomes much more
complex for multilevel systems, and its analytic study
turns impossible in the majority of cases. In this work,
we suggest a general theoretical model for numerically
analyzing the coherent population trapping spectra of
atoms with an arbitrary number of levels and compare
the results obtained for this model with the experimen-
tal data on samarium [9].

In Section 2, we describe the coherent population
trapping effect in terms of the simplest three-level Λ
system model. Section 3 contains a description of a
general mathematical technique for calculating station-
ary states of active atoms and the corresponding level
populations, absorption coefficients, and the dispersion
of applied fields from the point of view of the spectros-
copy of dark resonances. A method for taking into
account the Doppler effect in calculating medium
absorption is considered in Section 4. An experimental
study of coherent population trapping in samarium
vapor is described in Section 5. For samarium atoms,
completely taking into account the Zeeman structure of
lines involved in the formation of coherent population
trapping resonances requires the use of a 12-level
model. However, even a substantially simpler 4-level
model gives close qualitative agreement with experi-
ment. Section 6 contains a general description of this
model and parameters necessary for performing calcu-
lations and comparing them with experimental results.
The results obtained in calculating absorption in the
absence of magnetic fields and under longitudinal and
transverse applied fields are given in Section 7, where
these results are compared with experimental data. The
most important conclusions are formulated in Section 8.
The special features of coherent population trapping
resonances against the background of a line broadened
by the Doppler effect in longitudinal and transverse
magnetic fields are considered in the Appendix.

2. COHERENT POPULATION TRAPPING 
IN A Λ SYSTEM

In the simplest three-level system of atomic transi-
tions in the Λ configuration, two lower long-lived levels
|1〉  and |2〉  with frequency splitting ∆ are coupled with
the upper excited energy level |3〉  by two light fields
(Fig. 1). If the |1〉   |2〉  transition is forbidden in the
dipole approximation and two fields E1
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 transitions, a
narrow coherent population trapping resonance is
formed as a result of quantum interference. It manifests
itself in absorption spectra by the appearance of a sharp
maximum when one of the acting fields, for instance,
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 passes zero, which corresponds to the exact res-
onance.

To describe the nature of this physical process more
visually, different basis sets are used to consider the
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atomic system. In particular, the 

 

|

 

1

 

〉

 

 and 

 

|

 

2

 

〉

 

 ground
states can conveniently be replaced by their symmetri-
cal and antisymmetric combinations 
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The matrix element of the electric dipole operator

between the ground and excited states vanishes for the
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 state at zero Raman detuning,

By far the larger part of atomic population is concen-
trated in this state named dark because of radiative
decay. As a result, fluorescence is almost fully sup-
pressed. This process of optical pumping into the
coherent dark state is known as coherent population
trapping. The coherent nature of population trapping
manifests itself by a dependence of the dark state on
laser field phases. It follows that acting field phase fluc-
tuations can decrease or even destroy coherent popula-
tion trapping, and it is necessary to stabilize the relative
phase of laser fields. Other decoherence processes and
Doppler broadening can also contribute to the destruc-
tion of coherent population trapping.

The experimentally observed line width is deter-
mined by the stability of detuning 

 

δ

 

R

 

 and phase differ-
ence 

 

∆ϕ

 

 and also by Doppler broadening, time-of-flight
broadening, Stark broadening (broadening caused by
light and external fields), broadening in nonuniform
magnetic fields, and impact broadening. The 

 

∆ϕ

 

 phase
difference can very accurately be stabilized in experi-
ments with alkali metal atoms, for instance, by modu-
lating lasers at a frequency corresponding to 

 

∆

 

. When
two independent diode lasers are used in the free gener-
ation mode, we can expect that coherent population
trapping resonances several MHz wide will be observ-
able.

3. A MATHEMATICAL TECHNIQUE 
FOR CALCULATING COHERENT POPULATION 

TRAPPING IN MULTILEVEL SYSTEMS

A description of the dynamics of quantum systems
in which relaxation processes occur requires modifying
dynamic equations in comparison with their usual form
given in traditional textbooks on quantum mechanics
and only applicable to closed systems without relax-
ation. While the dynamics of closed systems is deter-
mined by an energy operator acting on wave functions,
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the dynamics of systems with relaxation can only be
described by transformations of density matrix opera-
tors or of dynamic variables, that is, by superoperator
transformations. The simplest transformations of this
type also arise in systems without relaxation if these
systems are described in terms of density matrices, in
particular, by the Liouville quantum equation

The role of a superoperator transformation is here
played by the Liouvillian 
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 imaginary
factor, the Liouvillian is described by the commutator

with Hamiltonian  applied to the density matrix .
In order to introduce the corresponding superopera-

tors irrespective of the operators to be transformed, it
suffices to introduce the substitution symbol 

 

(

 

 for spec-
ifying the position into which the operator in question
should be substituted. In the Schrödinger representa-
tion, this is the density matrix. Further, we can use the
rules for handling symbolic expressions that follow
from the general definitions of the algebra of linear
operators [10], which are quite obvious. For instance,

In the symbolic representation, the Liouvillian of a
closed system has the form

(1)

Like all linear operators, superoperators can be writ-
ten in the form of the corresponding matrices after the
introduction of a linear basis in the linear space of
quantum operators. The use of this technique for sym-
bolically representing superoperators is effective in cal-
culating systems of arbitrary dimensions, especially in
calculating multilevel systems. In particular, because of
large problem dimensions, even merely writing down
the matrices that describe the evolution superoperators
becomes a technically complex task. However, if the
symbolic representation of superoperators is used,
these matrices can first be written in the symbolic form
thanks to its physical transparency, and matrix elements
can then be calculated either analytically or numeri-
cally (for large-dimensionality matrices) on a com-
puter. Technical difficulties of reproducing them are
then fully transferred to automatic computer calcula-
tions, and the results of such calculations can easily be
used in numerical calculations of applied problems
under consideration with programs written in the most
suitable programming language. We used a combina-
tion of the MATHEMATICA computer algebra pack-
age (for analytically setting superoperators) and the
Fortran language (for subsequent numerical calcula-
tions of spectra with the use of the calculated dynamic
superoperator matrices).
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--- Ĥ ρ̂,[ ] .–= =
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3.1. Calculations of the Liouvillian 
of an N-Level Atom in the Symbolic Representation

As for the two-level system, the Liouvillian of an
N-level atom in the rotating field approximation can be
written as the sum of contributions

(2)

where +r is the radiative damping superoperator, +e is
the elastic dephasing superoperator, +i is the superop-
erator of the interaction with the laser field, and +δ is
the laser detuning superoperator, which augments the
selected unperturbed evolution operator to the superop-
erator of free atomic dynamics in zero laser field. It
includes the corresponding detunings of all acting laser
fields and takes into account that free precession at the
frequencies of these fields is included into the unper-
turbed dynamics superoperator.

Radiative damping is described by the Liouvillian
that combines the population transfer superoperator

given by the  (  projector and the polarization

damping superoperator given by the [ , (]+ anticom-
mutator,

(3)

where the two-dimensional array γkl describes the rates
of spontaneous decay (for k > l) and pumping (for k < l).

Elastic dephasing is introduced by the +e superop-
erator written in terms of the squares of commutators
and determined by the particular model of dephasing.
In order to specify it, consider two types of dephasing.
First, we can only take into account internal dephasing
in the system of two electronic states k and l > k. In con-
formity with the microscopic nature of elastic dephas-
ing caused by weak collisions [11, 12] (random transi-
tion frequency fluctuations), this dephasing is
described by the corresponding random frequency shift

superoperator –(i/2)ξ(t)[(  – ), (], where ξ(t) is
the fluctuation transition frequency shift. The resulting
relaxation superoperator averaged over random phase
fluctuations has the form

where  =  –  is the population inversion oper-

ator for the kl subsystem and  is the corresponding
dephasing rate. This type of pure dephasing is not only
related to the dephasing of the kl transition itself but
also contributes to the dephasing of all the transitions
adjacent to it. It is nevertheless convenient to consider

+t +r +e +δ +i,+ + +=

P̂lk P̂kl

P̂kk

+r γkl P̂lk ( P̂kl
1
2
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the dephasing only of the kl transition with the use of
the representation

where  =  +  is the operator of the total popu-
lation of the kl subsystem. The first term,

(4)

describes purely internal dephasing and does not influ-

ence adjacent transitions. Using all  independent
parameters, we can write the dephasing of all transi-
tions by (4) alone. For simplicity of describing the
physical nature of dephasing, it is, however, convenient
to introduce another contribution. This is equal dephas-
ings of arbitrary other levels through the kth and lth lev-
els in the absence of action on the kl transition itself,
that is, “external dephasing,”

(5)

where  is the corresponding dephasing rate.
Accordingly, the complete elastic dephasing superoper-
ator is given by the sum

(6)

The laser detuning superoperator depends on the
type of resonance under consideration and can usually
be written in the form of an antisymmetric superopera-
tor given by the commutator with population operators,

(7)

where δk is the array of frequency detunings.

The interaction with the laser field can be described
by the antisymmetric commutator with the polarization
operators

(8)

where Ωkl is the two-dimensional array of the Rabi fre-
quencies of the kl transitions.

After the introduction of the symbolic representa-
tion of the complete evolution operator [Eq. (2)] and its
components (3) and (6)–(8), we can calculate the N2 ×
N2 matrix representations of the Lt, Lr, Le, Lδ, and Li

values by the formula

Here, { } is the orthonormalized basis and parenthe-
ses denote the scalar multiplication of two operators of
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Îkl P̂ll P̂kk

+in
kl Γ in

kl P̂kk ( P̂ll P̂ll ( P̂kk+( ),–=

Γ in
kl

+ex
kl Γ ex
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the form Tr( ), which is antilinear in the first and
linear in the second multiplier.

The { } basis can conveniently be selected as Her-

mitian and expressed via the  transition operators
represented by N × N matrices, each with a single non-
zero kl element Pkl(k, l) = 1. It is also convenient to
assume that the levels are numbered in order of increas-
ing energy, E1 ≤ E2 ≤ … ≤ EN . The corresponding basis
is then constructed as follows:

(9)

where j(k, l) is the numbering index, that is, a one-to-
one mapping of the two-dimensional set of numbers kl
(k, l = 1, N) onto the one-dimensional set j = 1, N2. This
index can, in particular, be specified in the following
way universal for any N:

For N = 2, 3, and 4, this corresponds to the following
jN = (jN(k, l)) matrices:

Basis (9) is Hermitian and orthonormalized with

respect to the ( , ) scalar product described above,
and ( , ) = δmn for all m, n = 1, N2.

3.2. Calculations of Coherent Population Trapping 
in an N-Level Atom

The technique described above can effectively be
used in analytic calculations for solving the stationary
state problem and the complete spectral problem for the
+t evolution superoperator [13, 14].
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The most important properties of coherent popula-
tion trapping are determined by the absorption of
applied field. For the Λ resonance, absorption is
described by the equation

(10)

Here,  and  are averaged positive-fre-
quency operators of the complex amplitudes of the 1–3
and 2–3 transitions, respectively; ωL and  are the fre-
quencies of biharmonic pumping fields; g and g' are the
corresponding Rabi frequencies; and γ and γ' are the
corresponding radiative damping rates. The determina-

tion of the , , or n3 stationary mean values
requires calculating the corresponding vector represen-
tation 〈0| of the  stationary density matrix by solving
the 〈0| Lt = 0 equation.

In the basis under consideration with  = ,  =

, and  = , the first three vector 〈0| elements
describe populations and should be normalized accord-
ingly. The 〈0| bra vector of the stationary density matrix
should therefore be used in the normalized form

which automatically gives correct signs of the values to
be calculated. The mean populations then coincide with
the corresponding components,  = 〈0|k , k = 1, 3,
and the complex transition amplitudes are expressed
through the components with k > 3,

These equations allow absorption to be written in an
analytic form convenient for both numerical calcula-
tions and a qualitative analysis.

We wrote a universal Fortran program for calculat-
ing level populations, absorption coefficients, and dis-
persion in an arbitrary N-level system. The program can
be used at large N > 10 values. Its important feature is
the use of a minimum necessary number of input
parameters, which is substantially smaller than the N2 ×
N2 number of Liouvillian matrix elements in the Liou-
villian generalization under consideration [Eq. (1)],
because it is not necessary to write down all Lt dynamic
matrix elements by hand. According to (2)–(8), this
matrix in reality contains a huge number of zero contri-
butions.
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4. TAKING INTO ACCOUNT
THE DOPPLER EFFECT

The technique of calculations described in Section 3
can be used to obtain the dependences of the laser radi-
ation absorption coefficient for an atom at rest on the
first field δL and Raman δR detunings. In experiments,
moving atoms interact with fields. For this reason, the
Doppler effect influences the absorption coefficient of
the medium. In the absence of simplifications, this
requires performing calculations for a continuum of
detunings simultaneously. In this work, the Doppler
effect was taken into account by the following simpli-
fied method, which qualitatively corresponds to the
approach taken in [15], but without approximately
replacing the Maxwell velocity distribution by the
Lorentz distribution.

The frequency of the laser field that interacts with an
atom that moves in an arbitrary direction is given by the
formula ω1, 2 = ωLj + δLj , which takes into account the
first-order correction for the Doppler effect. Here, δLj =
ωLjv n/c, j = 1, 2, are the detunings of the biharmonic
laser field components and v n is the projection of the
velocity of the moving atom onto the vector n of laser
beam propagation.

The number of gas particles that move at velocity v k

at temperature T is determined by the Maxwell velocity
distribution [11]

where

The δR = ωL2 – ωL1 – ∆ Raman detuning for laser
beams propagating in one direction is then considered
approximately constant for particles moving at differ-

dN
dδL

--------
N

π
-------

δL

∆ωD

----------- 
 

2

–
dδL

∆ωD

-----------, ∆ωDexp
ωL1v 0

c
---------------,= =

δL ω ωL1, v 0– 2kT
m

---------.= =
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ent velocities. The dependence of the absorption coeffi-
cient for field ωL1 on the Raman detuning when field
ωL2 is scanned therefore has the form

(11)

where K(δL, δR) is the absorption coefficient of the atom
at rest.

5. EXPERIMENTAL OBSERVATION 
OF COHERENT POPULATION TRAPPING 

RESONANCES IN SAMARIUM VAPOR

As mentioned in Section 1, samarium is a promising
candidate for studying the feasibility of using coherent
population trapping resonances in rare-earth metal
vapors for metrological application purposes by high-
resolution nonlinear spectroscopy methods. A diagram
of the energy levels of the samarium atom is shown in
Fig. 2. We experimentally studied samarium vapor
absorption in the region of the

(12)

transition lines, which formed a Λ system.
The experimental unit is schematically drawn in

Fig. 3. The radiation sources were two semiconductor
lasers (1, 2) with external cavity resonators tuned to res-
onance wavelengths 672 and 686 nm. The lasers were
assembled according to the Littrov scheme with a col-
limating aspherical objective and a holographic grating
of 1800 lines/mm. The free detuning range of lasers
was around 5 GHz. The lasers, with radiation wave-
lengths 672 and 686 nm, radiated 2.5 and 12 mW,
respectively, in the single-frequency mode.

The spectra of the transitions in samarium that we
were interested in were studied in detail in [16] by sub-

KD δR( ) K δL δR,( )
Nd
δLd

-------- δL,d∫=

4 f 66s2 F7
0( ) 4 f 6 F7( )6s6 p P3 0( )

9
F1

0

4 f 66s2 F7
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(a) (b)
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J = 1

672 nm
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293 cm–1
J = 1

J = 2

J = 0
4f 66s2

δL

ωL2
γ42

δR

∆

ω13

ω23
ωL1

γ41

Ω14

Γ14

Ω24
Γ24

γ21, Γ12, ω12
|1〉
J = 0

|2〉
J = 1

|3〉
J = 2

|4〉
J = 1 γ43

γ32, Γ23, ω23

Fig. 2. (a) Diagram of energy levels of the samarium atom and (b) parameters used in calculations. The notation is the same as in
Fig. 1 (for the corresponding level numbers).
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Doppler absorption saturation spectroscopy. In [16],
the relative isotopic shifts and hyperfine splittings of
the levels were determined accurate to 1–2 MHz. The
154Sm isotope (abundance 22.75%) had lines shifted
with respect to the spectral lines of the other isotopes
[144Sm (3.07%), 147Sm (14.99%), 148Sm (11.24%),
149Sm (13.82%), 150Sm (7.38%), and 152Sm (26.75%)]
by 1 GHz to the red, which allowed reliable frequency
locking to the transitions in this isotope to be per-
formed. The presence of the other isotopes, however,
slightly changed the wings of the working transition
line.

Samarium vapor was generated in stainless steel
cell 7, which was 50 cm long and had glass windows at
the ends. The cell was connected to a vacuum line and
a system for buffer gas puffing. The cell was heated in
its central part (15 cm long) with coaxial direct-current
heater 8 (~500 W). The remanent magnetic field in the
cell was of fractions of an oersted unit. The cell was
placed within two pairs of Helmholtz rings 9 30 cm in
diameter, which could be used to create longitudinal
and transverse magnetic fields up to 40 Oe in the central
part of the cell. To obtain noticeable absorption, the cell
was heated to about 1000 K [9]. Vapor concentration at
this temperature was about 1011–1012 cm–3.

The 672 nm laser was tuned to the center of the

4f 66s2(7F0)  4f 66s6p(9 ) transition in 154Sm and
locked to the transmission peak of stabilized one-meter
confocal interferometer 12 with a high long-term sta-
bility (about 5 MHz/h). The width of the laser genera-
tion spectrum was less than 0.5 MHz. The 686 nm laser
was slowly retuned in the region of the 4f 66s2(7F1) 

4f 66s6p(9 ) transition in such a way that its frequency
passed the δR = 0 point. Laser generation frequency
variations were controlled by 0.5-m confocal interfer-
ometer 13 with a Q-factor of about 20 and a free disper-
sion region of 149.8 + 0.1 MHz. The mode composition
of laser radiation was controlled using spectrum ana-
lyzer 14 with a Q-factor of 50 and a free dispersion
region of 8 GHz. All interferometers were optically iso-
lated from lasers to prevent the arising of feedback.
Linearly polarized laser radiation converged into one
beam (accurate to 10–3 rad) on polarization cube 6 and
was launched into the cell with samarium vapor. The
polarization planes of the beams were mutually orthog-
onal. At the entrance to the cell, radiation power density
was 0.1 mW/mm2 for the 672 nm laser and 0.2 mW/mm2

for the 686 nm laser. After exit from the cell, the beams
were divided using holographic diffraction grating 15
(2400 lines/mm) and directed to a system for recording
(components 16, 20, and 21).

As coherent population trapping is related to atomic
system interactions with a dichromatic light field, we
only recorded changes in the adsorption of laser radia-
tion at 672 nm caused by the presence of the second
light field. For this purpose, the beam from the 686 nm

     F1
0

     

F1
0
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laser was modulated by liquid crystalline modulator 4
at a frequency of f

 

m

 

 = 600 Hz before it entered the cell,
and the signal with the same modulation frequency was
recorded in the channel of the 672 nm laser. The pres-
ence of broad excess absorption wings was caused by
collisions with buffer gas atoms [17]. The spectra of
induced absorption were recorded at both zero mag-
netic field and under applied longitudinal and trans-
verse magnetic fields. In experiments with transverse
applied fields, their direction was aligned with the
direction of 672 nm laser polarization.

6. COHERENT POPULATION TRAPPING
IN THE FOUR-LEVEL MODEL

In the experiment under consideration, apart from
the active samarium vapor levels that formed the 

 

Λ

 

 sys-
tem, the formation of coherent population trapping res-
onances involved the 4

 

f

 

6

 

6

 

s

 

2

 

 (

 

J

 

 = 2) level. Although this
level did not directly participate in the excitation of the
upper level, it absorbed part of the population as a con-
sequence of radiative decay (Fig. 2a). In addition, the

 

J

 

 = 2 level was populated by incoherent pumping from
the lower levels that formed the 

 

Λ

 

 system. It follows
that the 

 

J

 

 = 2 level played the role of a reservoir for
coherent population trapping in the 

 

Λ

 

 system under
consideration and its presence made the 

 

Λ

 

 system an
open system. In the absence of magnetic field, this four-
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 Experimental unit for measuring dark resonance
spectra in samarium vapor;

 

 1 

 

and 

 

2

 

 are semiconducting
lasers with 672 and 686 nm wavelengths, respectively;

 

3

 

 and 

 

5

 

 are light-splitting cubes; 

 

4

 

 is a modulator (600 Hz
frequency); 

 

6

 

 is a polarizing cube; 

 

7 

 

is a cell with samarium
vapor; 

 

8

 

 is a coaxial heater; rings 
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are Helmholtz rings;
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 and 

 

11

 

 are optical insulators; 

 

12 

 

is a confocal interferom-
eter with the region of free dispersion of 74.35 

 

±

 

 0.01 MHz;

 

13

 

 is a confocal interferometer with the region of free dis-
persion of 149.8 

 

±

 

 0.01 MHz; 
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is a spectroanalyzer; 
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 is
a 2400 lines/mm diffraction grating; 

 

16

 

–
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 are photo-
diodes; 

 

19

 

 is a generator; 
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 is a synchronous detector;

 

21

 

 is an oscilloscope with memory; and 

 

22

 

 is the electronic
block for locking the 672 nm laser frequency to the trans-
mission peak of interferometer 

 

12

 

.
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level model takes into account the main mechanisms
that determine coherent population trapping effects.

The characteristics of the samarium atom and the
parameters of experiments necessary for a comparison
with experimental data are summarized in Tables 1, 2,
and 3. Table 1 contains the oscillator strengths of the
transitions of interest, and Table 2, the energies and
g-factors of the lower metastable levels with J = 0, 1,
and 2 and the upper level of the Λ system. The relative
populations of the metastable levels at T = 600°C are
also given (see [16]).

Dipole moment d, Rabi frequencies Ω , and decay
rates γ are calculated by the equations

where m and e are the mass and the charge of the elec-
tron, respectively; c is the velocity of light; ωJJ' is the
transition frequency; and | fJJ' | is the oscillator strength
of the J  J ' transition. The electric fields are calcu-

lated by the formula E = ; they take on the
values EL1 ≈ 270 V/m and EL2 ≈ 390 V/m at laser radia-
tion power densities at the entrance to the cell of WL1 =
0.1 mW/mm2 and WL2 = 0.2 mW/mm2, respectively [9].
The calculation results are summarized in Table 3.

The longitudinal and transverse magnetic field
intensities were 15 and 29 Oe, respectively. The Zee-
man splittings in the longitudinal magnetic field calcu-
lated as ∆ = egH/2mc were ∆' = 1.98 × 108 s–1 for the
6s6p level and ∆'' = 4.09 × 108 s–1 for the 6s2 level. The

dJ J'
2 3"e2

2m
-----------

2J 1+( ) f J J'

ωJ J'
--------------------------------,=

ΩJ J'

dJ J'E
"

------------, γJ J'

4dJ J'
2 ω3

3"c3
------------------,= =

2W /cε0

Table 1.  Wavelengths and oscillator strengths of active tran-
sitions

Transition Wavelength 
λ, nm

Oscillator
strength gf

6s2 (J = 0)  6s6p (J = 1) 672.5875 8.5 × 10–3

6s2 (J = 1)  6s6p (J = 1) 686.0927 9.5 × 10–3
JOURNAL OF EXPERIMENTAL
                               

transverse magnetic field splittings were ∆' = 2.50 ×
108 s–1 for the 6s6p level and ∆'' = 5.17 × 108 s–1 for the
6s2 level.

7. THE RESULTS OF SIMULATING
THE COHERENT POPULATION TRAPPING 

SPECTRA IN SAMARIUM VAPOR

Calculations based on the technique described in
Section 3 gave the absorption coefficients of a samar-
ium atom at rest for the three- and four-level models
(Figs. 4a and 4b, respectively). An analysis of the
dependences plotted in these figures shows that the
introduction of the fourth J = 2 level into the three-level
model has virtually no effect on the width of the reso-
nance, whereas the complete absorption value for the
four-level system is much smaller than for the three-
level one. The reason for this is population trapping at
the J = 2 level through the corresponding radiative
decay channel.

7.1. The Modification of the Spectra
in a Magnetic Field

Applying magnetic field transforms the three-level
system of the samarium atom considered above into a
seven-level one because of the splitting of the J = 1 lev-
els. The |3〉  level splits into three components (Fig. 5),
which results in the existence of three transitions to the
|1〉  level allowed by the selection rules for radiative
transitions. The probability of each of these transitions
equals one-third of the total probability of the |3〉 
|1〉  transition. Similarly, the |2〉  level also splits into
three components, and, according to the selection rules,
the |3〉  |2〉  transition transforms into six transitions,
the probability of each of them being one-sixth of the
total probability of the |3〉  |2〉  transition.

An additional decay channel in multilevel systems
compared with three-level ones is collisional depolar-
ization [18]. The depolarization of an atom caused by a
collision with another atom is related to transitions
between states with different magnetic moment projec-
tions onto the selected direction. When a magnetic field
is applied, collisions cause transitions between Zeeman
sublevels with different magnetic momentum projec-
tions for each multiplet, |m〉  |m ± 1〉 . Collisions

     

                                                       
Table 2.  Samarium energy levels determining absorption spectrum

Even levels 4f66s2(7F) Odd level 4f6(7F)6s6p(3P0)9

J Energy, cm–1 g Relative population 
at T = 600°C J Energy, cm–1 g

0 0 – 1.0

1 292.58 1.50 0.6 1 14863.85 3.10

2 811.92 1.50 0.24

F1
0
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Fig. 4. Probing field absorption coefficients in (a) three-level and (b) four-level systems as functions of Raman detuning δR at δL = 0

and different dephasing rates (s–1). The corresponding schemes of levels are given in Figs. 1 and 2.
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Fig. 5. Scheme of the Λ system of a samarium atom under applied (a) longitudinal magnetic field for linear orthogonal laser beam
polarizations and (b) transverse magnetic field; the selection rules for the first field are ωL1 – ∆m1 = ±1 (a) and 0 (b); for the second
field, ωL2 – ∆m2 = ±1; ∆' and ∆'' are the Zeeman splittings of the lower and upper levels with J ≠ 0, respectively.
                    
with changes in momentum projections destroy the
coherence of the lower Λ system levels, which influ-
ences the coherent population trapping resonance
value. We used the numerical data given in Section 6 to
perform theoretical calculations. In the calculations,
this process was taken into account by introducing
depolarization constant G between the levels of each
multiplet. This constant was used as an adjustable
parameter and was varied in the range G = 0–80γ41.

Below, we will distinguish between two applied
magnetic field configurations, namely, longitudinal and
transverse.

7.2. Longitudinal Magnetic Field

A scheme of levels for the longitudinal field config-
uration is shown in Fig. 5a. According to the selection
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHY
rules, six transitions are allowed for linearly polarized
fields in the system under consideration, because E1 ⊥
H (∆m1 = ±1) and E2 ⊥  H (∆m2 = ±1). The |1〉  |5〉 ,
|3〉  |5〉  and |1〉  |7〉 , |3〉  |7〉  transitions form
two Λ systems, whereas the |2〉  |6〉  and |4〉  |6〉
transitions, which are also allowed by the selection

     
               

           

Table 3.  

 

Parameters determining 

 

Λ

 

 system excitation

Rabi frequency, s

 

–1

 

Radiative decay 
rate, s

 

–1

 

Dephasing rate, s

 

–1

 

Ω

 

14

 

 = 0.58 

 

× 107 γ41 = 0.42 × 106 Γ12 = 2.4 × 104

Ω24 = 0.83 × 107 γ42 = 0.45 × 106 Γ23 = 1.6 × 104

– γ43 = 0.42 × 106 –
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Fig. 6. Dependence of the absorption coefficient of the
samarium atom at rest on δR and δL in applied longitudinal
magnetic field.
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Fig. 7. (a) Theoretical dependences of the absorption coef-
ficient of a seven-level system on Raman detuning δR in a
longitudinal magnetic field calculated taking into account
the Doppler effect at two temperatures T = 10 K (dashed
line) and T = 873 K (solid line) and (b) experimental depen-
dence of absorption coefficient in a 29 Oe longitudinal mag-
netic field at a 0.2 Torr buffer gas (Ar) pressure.
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rules, do not participate in Λ system formation but are
responsible for the formation of additional absorption
peaks (see Appendix).

The dependence of the absorption coefficient of the
samarium atom at rest on the Raman δR and laser δL

detunings for the configuration under consideration is
shown in Fig. 6; this dependence does not take into
account depolarization. Including depolarization
results, first, in an increase in induced absorption and,
second, in a monotonic decrease in the contrast of
coherent population trapping resonances. We observe
hardly any depolarization effects on the width of coher-
ent population trapping resonances.

We used (11) and the calculated absorption of the
atom at rest to determine the absorption coefficient of
the medium. The dependences of the absorption coeffi-
cient of the medium at ωL1 = const and δL = 0 on the
Raman detuning δR are shown in Fig. 7a for two tem-
peratures, T1 = 873 K (experimental temperature) and
T2 = 10 K.

Temperature variations change the absorption coef-
ficient magnitude but have virtually no effect on its
form. The reason for these changes is a temperature-
induced increase in the contribution of atoms that inter-
act with the field at large laser detunings, which
decreases absorption K(δL, δR).

For comparison, the experimental absorption spec-
trum of the probing laser field (672 nm, δL = 0) obtained
by scanning the frequency of the second controlling
field is shown in Fig. 7b. According to Fig. 7, the typical
width of experimentally observed coherent population
trapping resonances is 5–6 MHz, which is in agreement
with theoretical estimates. Because field absorption is
measured at a fixed ωL1 frequency tuned in resonance
with the atomic transition, the total width of the absorp-
tion contour as a function of the δR Raman detuning is
unbounded.

The estimates given in the Appendix show that
applying longitudinal magnetic field should split the
coherent population trapping resonance by 2∆'ω12/ω13.
The positions of coherent population trapping reso-
nances observed experimentally are in close agreement
with these results, and the splitting amounts to about
3 MHz.

The experimentally observed broad absorption con-
tour wings at large Raman detunings δR are explained
by the influence of collisions [17], namely, by the pos-
sibility of the transfer of atoms from different speed
groups to the group resonant to the light field [19]. This
mechanism was not taken into account in our calcula-
tions.

7.3. Transverse Magnetic Field

The energy level diagram for the samarium atom in
a transverse magnetic field is shown in Fig. 5b. Linearly
polarized laser radiation with frequency ωL1 can only
AND THEORETICAL PHYSICS      Vol. 96      No. 4      2003
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cause transitions with ∆m = 0 (π components) in trans-
verse magnetic field H⊥  (the H⊥  vector lies in the polar-
ization plane). At the same time, laser radiation with
frequency ωL2 and the polarization plane orthogonal to
H⊥  causes transitions with ∆m = ±1 (σ components).
Two Λ systems (the transitions |1〉  |6〉 , |2〉  |6〉
and |1〉  |6〉 , |4〉  |6〉) are then formed. The
|3〉  |5〉  and |3〉  |7〉  transitions do not partici-
pate in Λ system formation.

The absorption coefficients of the atom at rest, the
depolarization effects, and the absorption coefficients
of the medium taking into account the Doppler effect
were calculated for the system in a transverse magnetic
field using the approach described in Section 4.

The special feature of absorption spectra in a trans-
verse magnetic field is the splitting of the coherent pop-
ulation trapping resonance line. The splitting of the res-
onance coincides with the Zeeman splitting value for
level J = 1 sublevels |2〉  and |4〉 , ∆ω = 2∆' (see
Appendix).

The depolarization of magnetic sublevels manifests
itself similarly to the case of a longitudinal magnetic
field (see Section 7.2). The resonance contrast is maxi-

          
          

                

0.2

0
–1250

A
bs

or
pt

io
n 

co
ef

fi
ci

en
t, 

ar
b.

 u
ni

ts

 

δ

 

R

 

, MHz

0.4

0–2500 1250 2500

0.6

0.8 (b)

0.02

0
–1000

0.08

0–1500 1000 1500

0.10

0.12 (a)

0.04

0.06

500–500

 

Fig. 8. 

 

(a) Theoretical dependences of the absorption coef-
ficient of a seven-level system on Raman detuning 

 

δ

 

R

 

 in a
transverse magnetic field calculated taking into account the
Doppler effect at 

 

T 

 

= 873 K for two magnetic sublevel depo-
larization values, 

 

G 

 

= 0 (solid line) and 

 

G

 

 = 0.5 (dashed line)
and (b) experimental dependence of the absorption coeffi-
cient in a 29 Oe transverse magnetic field at a 0.2 Torr buffer
gas (Ar) pressure.
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mum at G = 0; it decreases as G grows, but its width
remains virtually constant.

The experimental data are compared with the theo-
retically calculated absorption coefficients of the
medium in a transverse magnetic field in Fig. 8. As with
a longitudinal magnetic field, the positions and widths
of coherent population trapping resonances observed
experimentally coincide with those found in theoretical
calculations (see Appendix).
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Observation of coherent population trapping reso-
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) is the Maxwell
velocity distribution function, points

 

 a

 

 and 

 

b 

 

correspond to
particles with a definite velocity projection onto the beam
propagation direction, namely, the projection at which the
Doppler shift balances the detuning of field 

 

ω

 

L

 

1

 

 frequency
from the 

 

|

 

1

 

〉  |

 

7

 

〉

 

 and 

 

|

 

1〉  |5〉  quantum transition
frequencies, respectively; points c, d, e, and f correspond to
the velocity groups of particles for which the Doppler shift
balances detuning  of frequency ωL2 from the |3〉 
|7〉 , |2〉  |6〉 , |4〉  |6〉 , and |3〉  |5〉  quantum
transition frequencies, respectively; (b) illustration of the
formation of absorption peaks K(ω); and (c) illustration of
the formation of coherent population trapping resonances
against the background of a Doppler-broadened line.
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8. CONCLUSIONS

In this work, we suggested a theoretical model for
describing coherent population trapping in multilevel
systems that allows calculations to be performed using
a minimal set of input parameters. An analysis of the
spectroscopic characteristics of coherent population
trapping in samarium vapor in terms of this model
showed that coherent population trapping resonances in
the absence of an external magnetic field could well be
approximated by a simple four-level model.

When a longitudinal or transverse magnetic field
was applied, the spectroscopic characteristics of samar-
ium atoms were well described by a seven-level model.
The complication of the energy structure of samarium
atom levels increased the number of coherent popula-
tion trapping resonances and caused the appearance of
additional peaks in the spectra, because the system
under consideration decomposed into a set of three-
level Λ systems, each being responsible for the forma-
tion of a resonance of its own. The transitions between
the levels that did not directly participate in the forma-
tion of Λ systems contributed to the formation of
induced absorption peaks.

In the presence of magnetic field, the depolarization
of magnetic sublevels substantially influenced the
shape of the absorption line and the contrast of coherent
population trapping resonances, namely, the contrast of
coherent population trapping resonances monotoni-
cally decreased as the depolarization constant
increased.

The absorption coefficients of vapor were calculated
taking into account the Maxwell velocity distribution of
atoms and compared with the experimental data. It was
shown that temperature variations caused changes in
the absorption coefficient magnitude but had almost no
effect on its form.

The results of numerical calculations accurately
reproduced the experimental data on coherent popula-
tion trapping resonance positions and widths and on the
shape of the spectra obtained in the presence of a trans-
verse magnetic field. Qualitatively, the theoretical esti-
mates were also in agreement with the splitting of the
coherent population trapping resonance by a small
value of the order of 3 MHz observed experimentally in
a longitudinal magnetic field. The reproduction of such
a splitting in numerical calculations would, however,
require going beyond the approximations [15] usually
applied to describe the Doppler broadening effect on
the formation of coherent population trapping spectra.
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APPENDIX

 

FEATURES OF COHERENT POPULATION 
TRAPPING RESONANCES 

AGAINST THE BACKGROUND
OF A DOPPLER-BROADENED LINE

IN MAGNETIC FIELDS

 

Longitudinal Magnetic Field

 

In experiments, the frequency of the first laser is
constant and equal to 

 

ω

 

L

 

1

 

 = 

 

ω

 

13

 

 + , where  is a
small laser detuning. Only the particles that have a cer-
tain velocity projection along the light beam direction
can be in resonance with field 

 

ω

 

L

 

1

 

. This projection is
determined by the condition that the Doppler shift
should balance the detuning of field 

 

ωL1 from the fre-
quencies of the |1〉  |7〉  and |1〉  |5〉  quantum
transitions (points a and b in Fig. 9a).

The absorption of wave ωL1 is observed at the fre-
quencies ω13 + ∆'' (the |1〉  |7〉  transition) and ω13 –
∆'' (the |1〉  |5〉  transition). According to the defini-
tion of the Doppler effect, the corresponding group
velocities are

The interaction of particles in each velocity group with
field ωL1 depletes level |1〉 , whereas the populations of
levels |2〉 , |3〉 , and |4〉  increase because of upper level
decays. The second frequency ωL2 = ω23 + , where

 is the detuning of the second field, is scanned in a
wide frequency range. The c, d, e, and f points in Fig. 9a
correspond to the velocity groups of particles for which
the Doppler shift balances the  detuning of fre-
quency ωL2 from the |3〉  |7〉 , |2〉  |6〉 , |4〉 
|6〉 , and |3〉  |5〉  quantum transition frequencies. The
absorption of wave ωL2 is observed at four frequencies,
namely, ω23 ± ∆'' (the |3〉  |7〉  and |3〉  |5〉  tran-
sitions) and ω23 ± ∆' (|2〉  |6〉  and |4〉  |6〉 tran-
sitions); that is, the equations for the corresponding
velocity groups have the form
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ωL1
ω13 ∆''–
1 v x2/c–
----------------------=

1
v x2

c
--------– 

  ω13 ∆''–
ωL1

------------------- point b( ).=

δL2

δL2

δL2

               
     

          
          

ωL2
ω23 ∆''+
1 v x3/c–
----------------------=

1
v x3

c
--------– 

  ω23 ∆''+
ωL2

-------------------- point c( ),=
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If the detuning  is larger than ω23 + ∆'', points c–f are
situated to the left of point b. In all these velocity
groups (a–f), atoms are excited by radiation ωL2 or ωL1.
Equilibrium population distribution is disturbed. The c,
d, e, and f plot points (Fig. 9a) move to the right as
detuning  decreases. When points c and b coincide,
the atoms in these velocity groups simultaneously inter-
act with both fields. Two transitions that do not form a
Λ system are excited, but, because the distribution of
particles over levels is nonequilibrium and level |3〉  is
populated excessively, the absorption of the second
wave increases, which corresponds to an absorption
peak (Fig. 9b). The frequency of this absorption peak
can be determined from the condition of the coinci-
dence of velocity groups v x2 (point b) and v x3 (point c);
that is, from the condition

Using this equation, we easily find the frequency at
which the first absorption peak is observed, ωL2 = ω23 +
2∆'' + . Decreasing  further, we observe absorp-
tion peaks corresponding to the coincidence of the v x2
and v x4 (points b and d) and v x2 and v x5 (points b and e)
velocity groups. The corresponding frequencies are
ωL2 = ω23 + ∆'' + ∆' +  and ωL2 = ω23 + ∆' + .

Decreasing  further brings points c and a in coinci-
dence, which corresponds to simultaneous excitation of
the |1〉  |7〉  and |3〉  |7〉  transitions, that is, to a
coherent population trapping resonance in the Λ system
formed by the |1〉 , |3〉 , and |7〉  levels. Let us calculate the
frequency of the coherent population trapping reso-
nance peak. The condition of the coincidence of veloc-
ity groups v x1 and v x3 is

ωL2
ω23 ∆'+

1 v x4/c–
----------------------=

1
v x4

c
--------– 

  ω23 ∆'+
ωL2

------------------- point d( ),=

ωL2
ω23 ∆'–

1 v x5/c–
----------------------=

1
v x5

c
--------– 

  ω23 ∆'–
ωL2

------------------ point e( ).=

ωL2
ω23 ∆''–
1 v x6/c–
----------------------=

1
v x6

c
--------– 

  ω23 ∆''–
ωL2

------------------- point f( ).=

δL2

δL2

ω13 ∆''–
ωL1

-------------------
ω23 ∆''+

ωL2
--------------------.=

δL1
δL2

δL1
δL1

δL2

          

1
v x1

c
--------– 

  ω13 ∆''+
ωL1

--------------------, 1
v x3

c
--------– 

  ω23 ∆''+
ωL2

--------------------.= =
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It follows that the first coherent population trapping
resonance is observed at the frequency

The second coherent population trapping resonance
arises when the v x6 (point f) and v x2 (point b) velocity
groups coincide. Accordingly, we obtain the frequency
of the second coherent population trapping resonance
peak in the form

The distance between the two coherent population trap-
ping resonances is

A further decrease in  results in the appearance
of absorption peaks in the left part of the plot (Fig. 9c).
Note that the laser detuning of the second field being
nonzero results in that the distribution of peaks and res-
onances is symmetrical with respect to the frequency

(A.1)

To summarize, we observe six absorption peaks and
two coherent population trapping resonances symmet-
rically distributed with respect to the (A.1) frequency
on a Doppler broadened contour, which differs from the
picture characteristic of an atom at rest.

Transverse Magnetic Field

The reasoning is similar to that with a longitudinal
magnetic field. The absorption of wave ωL1 is observed
at the ω13 frequency (the 

 

|

 

1

 

〉  |

 

6

 

〉

 

 transition). The
second frequency 
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 = 
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 + , where  is the
detuning of the second field, is scanned in a wide fre-
quency range. The absorption of wave 
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 is observed
at two frequencies, namely, 
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 transitions). Simultaneous excitation of the
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 transitions and of the

 |  1  〉  |  6  〉   and  |  4  〉  |  6  〉   transitions corresponds to
coherent population trapping resonances in the 
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tems formed by the 
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 levels,
respectively. It follows that two coherent population
trapping resonances are observed at the 

 

ω

 

L

 

2

 

 = 

 

ω

 

23

 

 

 

±

 

 ∆'
frequencies. The distance between the resonances
equals twice the Zeeman splitting of the lower level,
that is, ∆ω⊥  = 2∆'. Note that the ratio between the split-
tings of coherent population trapping resonances for

ωL2 ω23 δL1

ω12∆''
ω13

--------------.+ +=

ωL2 ω23 δL1

ω12∆''
ω13

--------------.–+=

ωL2
ac ωL2

bf– 2∆'
ω12

ω13
--------.=

δL2

ωL2 ω23 δL1
.+=

δL2
δL2
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samarium in transverse and longitudinal magnetic
fields is

REFERENCES
1. E. Arimondo, in Progress in Optics, Ed. by E. Wolf

(Elsevier, Amsterdam, 1996), Vol. 35, p. 257.
2. G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo

Cimento B 36, 5 (1976).
3. H. R. Gray, R. M. Whitly, and C. R. Stroud, Jr., Opt. Lett.

3, 218 (1978).
4. G. Alzetta, L. Moi, and G. Orriols, Nuovo Cimento B 52,

209 (1979); Opt. Commun. 42, 335 (1982).
5. A. Aspect, E. Arimondo, R. Kaiser, et al., Phys. Rev.

Lett. 61, 826 (1988).
6. A. Kasapi, Phys. Rev. Lett. 77, 1035 (1996).
7. R. Wynands and A. Nagel, Appl. Phys. B 68, 1 (1999).
8. R. Holtzwarth, Th. Udem, and T. W. Haensh, Phys. Rev.

Lett. 85, 2264 (2000).
9. N. N. Kolachevskiœ, A. V. Akimov, N. A. Kiselev, et al.,

Kvantovaya Élektron. (Moscow) 31 (1), 61 (2001).

∆ω⊥

∆ω||
----------

2∆⊥'

2∆||'ω12/ω13

--------------------------- 25
H ⊥

H ||
-------.= =
JOURNAL OF EXPERIMENTAL
10. B. A. Grishanin, http://comsim1.phys.msu.su/peo-
ple/grishanin/teaching/qsp/.

11. L. A. Vaœnshteœn, I. I. Sobel’man, and E. A. Yukov, Exci-
tation of Atoms and Broadening of Spectral Lines
(Nauka, Moscow, 1978; Springer, Berlin, 1981).

12. W. Happer, Rev. Mod. Phys. 44, 169 (1972).
13. B. A. Grishanin, V. N. Zadkov, and D. Meschede, Phys.

Rev. A 58, 4235 (1998).
14. I. V. Bargatin, B. A. Grishanin, and V. N. Zadkov, Proc.

SPIE 3736, 246 (1998).
15. E. Kuznetsova, O. Kocharovskaya, and M. O. Scully,

Proc. SPIE 4750, 117 (2002).
16. N. N. Kolachevskiœ, A. V. Akimov, N. A. Kiselev, et al.,

Opt. Spektrosk. 90 (2), 201 (2001) [Opt. Spectrosc. 90,
164 (2001)].

17. A. V. Akimov, N. N. Kolachevsky, V. N. Sorokin, and
S. I. Kanorsky, in Abstracts of International Quantum
Electronics Conference, IQEC-2002, Technical Digest
(Moscow, 2002), p. 93.

18. B. M. Smirnov, Excited Atoms (Énergoizdat, Moscow,
1982).

19. P. F. Liao, J. E. Bjorkholm, and P. R. Berman, Phys. Rev.
A 21 (6), 1927 (1980).

Translated by V. Sipachev
  

 AND THEORETICAL PHYSICS

 

      

 

Vol. 96

 

      

 

No. 4

 

      

 

2003

                                                            


