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1. INTRODUCTION

Substantial progress was made over the last two
decades from an understanding of the basics of quan-
tum informatics towards developing its various applica-
tions, including quantum cryptography and quantum
computing (see [1] and references therein). Some of
these applications require the engineering of such
atomic devices as a set of several atoms or ions local-
ized in space for some essential portion of their func-
tioning time, which allows for quantum engineering
involving atomic states. A set of neutral atoms localized
in an optical dipole trap [2] is considered to be one of
the incarnations of such quantum-engineering devices.

By now, a few experimental efforts have been under-
taken to localize atoms in an optical dipole trap and to
control their positions in the trap by either changing the
parameters of the trap [3] or by guiding them through
the trap potential with the help of an optical conveyor
belt [4]. In both cases, a detailed description of atomic
motion in an optical dipole trap is of great importance
in order to clarify the mechanisms that determine the
atom dynamics.

One of the key characteristics of spatial atomic
dynamics in the trap is the lifetime (or escape time) of
the atoms in the trap (from the trap) under random per-
turbations [5]. A single atom localized in a micropoten-
tial hole of the dipole potential of the trap escapes from
the micropotential hole as a result of either heating due
to optical excitation or collisions with the buffer gas.
We will not consider the latter mechanism in our work,
as it has no fundamental character and can be, in prin-
ciple, eliminated in the experiment. At the same time,
interaction of atoms in the trap with an electromagnetic
field is a fundamental process and needs to be consid-
ered in detail. Simple estimates show that the laser field
of the beam that is used to form the optical dipole trap,
which is far detuned from the atomic resonance, gives

an extremely low probability of absorbing and/or emit-
ting photons. However, the resonant probe laser field
used in experiments allows one to drastically enhance
this rate and to significantly affect the atom dynamics
in the trap [6].

In the case of several atoms localized in the trap, we
also need to consider, in addition to the self-action res-
onant dipole–dipole interaction (RDDI) force acting on
each separate atom in the trap, the RDDI force acting
between different atoms. The RDDI force at large inter-
atomic distances depends on the interatomic distance as
1/

 

R

 

 and, for closely spaced atoms, as 1/

 

R

 

3

 

. In a specific
case in which two atoms are localized in the same
microtrap, their escape could be a result of short-range
RDDI, or so-called cold collisions between two closely
spaced atoms [7].

Due to the fundamental character of the RDDI and
its importance for the atom dynamics in the trap, it
deserves a detailed investigation, which is presented in
this paper. We performed a theoretical study and com-
puter simulation of the stochastic dynamics of atoms
localized in an optical dipole trap, the parameters of
which were to be taken similar to those of real experi-
ments [3, 4]. We also suggest using an additional reso-
nant probe laser field in order to enhance the long-range
RDDI and, thus, to clarify its role experimentally.

The paper is organized as follows. A model of an
optical dipole trap and different sets of parameters cor-
responding to different experimental setups are
described in Section 2. Physical models of the RDDI
fluctuating forces in both short-range and long-range
limits are outlined in Section 3, while the mathematical
details are summarized in the Appendices. Equations
for the modeling of atomic motion in the optical poten-
tial of the trap with various forces acting on the atoms,
including the cooling force and RDDI forces, are
described in Section 4. Preliminary estimates of the key
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parameters defining the atom dynamics, namely, the
diffusion time for an atom in the trap and the escape
time, which is the time that an atom needs to escape
from the trap due to the RDDI, are presented in Section
5. In the computer experiments summarized in Section
6, we analyze the role of RDDI interactions affecting
the dynamics of atoms in the optical dipole trap under
the action of a resonant probe laser field. Varying both
the parameters of the trap and the intensity and fre-
quency detuning of the probe field, we modeled the
RDDI interactions between atoms in short- and long-
range limits and clarified their importance. Key results
of the paper are summarized in Section 7.

2. MODEL OF AN OPTICAL DIPOLE TRAP

An optical dipole trap for neutral atoms can be made
of a tightly focused powerful laser beam, the frequency
of which is far detuned from the working transition of
trapped atoms. One can then easily show that the inter-
action of the induced dipole moments of the atoms in
the trap with the inhomogeneous electric field along the
beam profile leads to a restoring force that “traps” the
atoms inside the beam [2]. Presumably, the described
trapping mechanism works only for atoms with low
energies (at temperatures of about mK), because the
potential of the dipole trap is shallow. Therefore, an
atom should be cooled down, for example, in a magne-
tooptical trap, before being loaded into the optical
dipole trap [3–5, 8, 9].

In experiments, for controlling the positions of
atoms in the trap, it could be advantageous to keep sin-
gle atoms in micropotential holes. Such a regular pat-
tern of micropotential holes in the optical dipole trap
potential can be formed using counterpropagating laser
beams, which form the necessary structure due to their
interference. A scheme of a standing-wave optical
dipole trap formed with counterpropagating laser
beams is shown in Fig. 1a. It uses only one laser beam,
which interferes with the beam reflected from a mirror,
thus preserving the wave front and the polarization
[10]. The potential of the trap is shown in Fig. 1b.

In the following, we will consider a red-detuned
optical dipole trap configuration. Such a trap is formed
by a laser beam tuned far below the atomic resonance
frequency. We will also assume that the laser beam with
power 

 

P

 

 and wave vector 

 

k

 

 forming the trap has a Gaus-
sian intensity profile:

(1)

where 

 

r

 

 is the radial coordinate and the half-waist beam
diameter 

 

w

 

(

 

z

 

) depends on the axial coordinate 

 

z

 

 as
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Here, 
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 is the beam waist diameter and 
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 is
the Rayleigh length (the waist length).

As we mentioned earlier, the thermal energy 
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 of
atoms should be much smaller than the potential depth
of the trap 
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 J and, therefore,
movement of the trapped atoms in the radial direction
is reasonably small compared to the beam waist diam-
eter and, in the axial direction, the movement of the
atoms is smaller than the Rayleigh length. In this case,
the optical potential of the trap can be approximated as
[2]

(3)

From this formula, it follows that the optical potential
of the trap is modulated in the axial direction with a
period of 

 

λ

 

/2. The oscillation frequencies of the trapped
atoms are equal to the first approximation to 
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 in the
axial directions, respectively.

When a dipole trap contains atoms (we will consider
Cs or Rb atoms, which are typically used in optical
dipole trap experiments), one can also note that the
potential of the trap to the next approximation depends
on the energy shift of the atomic levels in the trap due
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Fig. 1.

 

 Scheme of a standing-wave optical dipole trap (a) and potential energy of the trap in the radial and axial directions (b). The
potential surface shows a regular pattern of micropotential holes.



 

LASER PHYSICS

 

      

 

Vol. 15

 

      

 

No. 8

 

      

 

2005

 

DYNAMICS OF ATOMS INTERACTING VIA THE RADIATION FIELD 3

 

to the interaction with the off-resonant radiation. Tak-
ing this into account (and neglecting the hyperfine split-
ting of the levels) [2], the potential energy of the trap
reads

(4)

where 

 

∆

 

1

 

 and 

 

∆

 

2

 

 are the frequency detunings of the laser
radiation from the frequencies of the atomic transitions
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, respectively; 

 

Γ

 

 is the
natural linewidth; and 

 

ω

 

0

 

 is the resonance atomic tran-
sition frequency.

An additional resonant laser probe field that can be
used in experiments with trapped atoms in the optical
dipole trap modifies not only the radiation processes
but also the optical potential of the trap due to redistri-
bution of the population from the ground energy level
of the atoms. As a result, the optical potential is
reduced:

(5)

where

is the population difference of the lower and upper

atomic levels and  = 

 

∆

 

/

 

Γ and  = ΩR/Γ = dE/�Γ are
the dimensionless frequency detuning and the Rabi fre-
quency, which both depend on the probe field intensity.

The parameters of the optical dipole trap that we
used in our model for numerical simulations through-
out the paper have been taken to be similar to the
parameters of the experimental setups of [3, 5].

Specifically, in [5], the optical dipole trap is formed
by focusing a 2.5-W Nd:YAG laser beam (1.064 µm)
with linear polarization along the x axis into an area
with a diameter of about 5 µm. Cesium atoms (working
transitions at 852 and 894 nm) trapped in the optical
dipole trap are assumed to be two-level atoms with
excited-state lifetimes of 1/γ = 3.07 × 10–8 s, and the
dipole moment of the working transition is d = 8.01 ×
10–18 SGSE. The frequencies of the atomic oscillations
in the radial and axial directions are equal to ωr ≈ 60 Hz
and ωz ≈ 1.5 MHz, respectively.

In [3], the optical dipole trap is formed by strong
focusing of a 3-mW laser beam at 810 nm into a waist
~1 µm diameter, which allows for deep localization of
atoms in the micropotential holes. Rubidium atoms
(working transitions at 780 and 795 nm) are used in the
experiment.
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3. MODELING OF THE RESONANT
DIPOLE–DIPOLE INTERACTIONS OF ATOMS

In this section, we will consider how to model the
resonant dipole–dipole interaction (RDDI) of atoms in
the trap, which can significantly affect the atomic
dynamics in the trap and result in the escape of atoms
from the trap [7, 11]. In our approach, we will distin-
guish between long-range and short-range RDDI,
which drastically differ in typical interaction energy
and timescale. This will allow us to use qualitatively
different models for these types of RDDI—an adequate
model for the long-range RDDI is the white noise pro-
cess, which leads to diffusion-type motion of atoms in
the trap, whereas the short-range RDDI can be modeled
well with a pulse train–like process, which results in
spasmodic motion of the atoms in the trap. Both of
these processes, however, are considered in the Markov
approximation, which is valid because the respective
correlation times of the processes are much smaller
than the typical dynamical changes in the considered
system.

The mathematical details are summarized in the
Appendices, whereas below we outline the physical
models that are used for further computer simulations.

3.1. Modeling of the Long-Range RDDI Force

In order to describe the radiation force acting on the
atoms, we will consider the electromagnetic field acting
on the atoms and the quantum fluctuations due to the
virtual photon exchange [12]. The quantum nature of
the fluctuations is taken into account after the elimina-
tion of a virtual photon by the operator character of the
corresponding fluctuating interaction force, which is
equally replaced with the classical white noise, whose
nonzero average value is defined versus the parameters
of the exciting laser field causing either Doppler cool-
ing or heating [13]. In this model, both the self-action
of an atom due to the reemission of a photon and the
interaction of two atoms via the exchange of virtual
photons are described equally well with the same cor-
relation matrix of the fluctuation force (see Appendi-
ces).

With the assumptions made above, we can calculate
the spectrum of the atomic radiation force, which, for
the case of a single atom that reemits the photons (self-
action force), is described by the 3D-vector of the ran-
dom force Fi acting on the ith atom (see Appendix B,
Eq. (B3)):

(6)

where I11 is the 3 × 3 matrix composed of numerical

constants, d = (3�c3Γ/4 )1/2 is the atomic transition

dipole moment, and  are the atomic transition oper-
ators.

Nii

�ω0
5
d

2

2πc
5

--------------- ∆σ1
–∆σ1

+〈 〉 I11,=

ω0
3

σ̂±



4

LASER PHYSICS      Vol. 15      No. 8      2005

YANYSHEV et al.

For two atoms (i and k) interacting via the long-
range RDDI, the spectral matrices of the fluctuation
force have, according to Appendix C, the form (see Eq.
(C6))

(7)

where I12 is the dimensionless 3 × 3 matrix that is deter-
mined by the geometry of the atomic dipole moments
with respect to the vector of the dipole moment dis-
placement and to the vector of an emitted photon. For
the dipole moments parallel to each other and orthogo-
nal to the vector of displacement and to the vector of the
emitted photon, we have

(8)

where

(9)

and ϕ12 = R12ω0/c is the dimensionless interatomic dis-
tance.

From Eqs. 9, one can easily see that, at R12  0,

the coefficients  grade into the respective coeffi-

cients for a single atom  =  = 2  = 16/15. At large
interatomic distances, i.e., at R � λ, Eqs. 9 can be

approximated by  =  = 0,  = 4sinϕ12/ϕ12.

In Eqs. (6) and (7),  is the correlation
function of the operator of photon exchange between
two atoms, which reads

where  = gL/Γ is the dimensionless Rabi frequency;
gL = Ed/� is the Rabi frequency; δ = ∆/Γ is the dimen-
sionless probe laser frequency detuning; and

is the dimensionless geometrical factor, which, for
interatomic distances R12 > λ, is simplified to g =
3sinϕ/2ϕ.

It is clear that, if we reduce the interatomic distance
to zero,  = I11, we will obtain the fluctua-

tions of a single atom. Therefore, assuming g = 1, we
can calculate the correlation function of the fluctuations
of a single atom, which reads

From Fig. 2b, one can clearly see that the correlation
function of the photon-exchange operator between two

atoms, , which describes the interaction
between the atoms, reaches its maximum at the detun-
ing δ = –1, when the interaction force between atoms
has its maximum value with respect to the fluctuation of
the self-acting force for a single atom. Such a maxi-
mum is reached at gL = 1.4, which corresponds to the
probe laser intensity I = 7.1 W/cm2.

3.2. Modeling of the Short-Range RDDI Force

At short interatomic distances that correspond, for
instance, to the case of two atoms in the same micropo-
tential hole in the optical dipole trap, we need to con-
sider the system of “two atoms plus the electromagnetic

field” or the following process: A + A + �ω  
[7]. Below, we outline how this process can be mod-
eled.

Let us first note that, during absorption or emission
of a photon, an essential part of the photon’s energy
�ω0 ~ 104 K is transferred into the translational degrees
of freedom of the atom that is absorbing or emitting the
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∆σ1
–∆σ2

+〈 〉

∆σ1
–∆σ2

+〈 〉
4gg̃L

4 1 4δ2
+( )–

1 g+( )2
4 g̃L

2 δ2
+( ) 4 1 g+( )2δ2

4 g̃L
2 2δ2

+( )
2

+ + +[ ]
2

---------------------------------------------------------------------------------------------------------------------------------,=

g̃L

g
3
2
---ϕ ϕcos ϕsin– ϕ2 ϕsin+

ϕ3
----------------------------------------------------------=

limϕ12 0→ I12

∆σ1
–∆σ2

+〈 〉

=  
2g̃L

4 1 2 g̃L
2 δ2

+( )
2

1 4δ2
+( )+ +( )

4 4 g̃L
2 δ2

+( ) 16δ2
4 g̃L

2 2δ2
+( )

2
+ + +( )

2
------------------------------------------------------------------------------------------------.

∆σ1
–∆σ2

+〈 〉

A2
*



LASER PHYSICS      Vol. 15      No. 8      2005

DYNAMICS OF ATOMS INTERACTING VIA THE RADIATION FIELD 5

photon. This could result in the escape of the atom from
the micropotential hole and then from the trap. The
probability of this process depends on the intensity of
the probe resonant/near-resonant laser field, its fre-
quency detuning from the atomic resonance, and the
interatomic distance. (Note also that the interaction of
closely spaced atoms can compensate for even a large
detuning of the incident laser field.)

Then, let us assume that the interaction potential
between closely spaced atoms can be described with
the following simple dependence:

where C = Const and R12 is the interatomic distance.
Then, we can approximate the atomic frequency shift
due to the quasi-electrostatic dipole–dipole interaction
of atoms with respect to the laser field intensity as fol-
lows:

where ∆ is the frequency detuning of the laser field
forming the optical dipole trap, δ0 = 1012 is the param-
eter that defines the frequency shift due to the interac-
tion of atoms, and a0 = 1 nm is the Weisskopf radius
[14].

The corresponding Hamiltonian, which describes
the modified interaction with the field at a given fre-
quency detuning, can be written as

where Ω0 is the Rabi frequency. Then, in the adiabatic
approximation, the corresponding population of the
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upper level can be written as

Keeping in mind that the time between atomic colli-
sions τcoll = a0/V � 10–9 s significantly exceeds the Rabi
oscillation period τ0 � 10–11 s, we can average the above
formula over the period τ0, which results in the follow-
ing population of the upper level:

(10)

which determines, within the frame of our approxima-
tions, the probability for an atom to leave the trap due
to a cold collision.

One can see from Eq. (10) that, at δ  0 (and,
respectively, at R12  a0(δ0/∆ω)1/6), the probability
for an atom to leave the trap reaches its maximum and
is equal to 1/2. This means that, while modeling the
cold collisions, one should take into account how the
cold-collision probability depends on the interatomic
distance.

4. MODELING OF ATOMIC MOTION
IN THE TRAP

The motion of atoms in the trap is governed by the
following equation:

(11)
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Fig. 2. Correlation functions of the fluctuations of a single atom,  (a), and the operator of photon exchange photons
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where the indices i and j number atoms in the trap, Udip
is the optical potential of the trap (see Section 2), Fcool

is the cooling force (linear friction), and  is the
fluctuation force due to the RDDI. If i = j, the RDDI
force corresponds to the case of the RDDI self-action
force for the atom itself; otherwise, it is the RDDI force
between two interacting atoms (see Section 3).

The cooling force due to the Doppler effect can be
written as [13]

(12)

where

is the radiation friction coefficient (plotted in Fig. 3), I
is the near-resonant probe laser beam intensity, and I0 is
the saturation intensity of the atomic transition.

The fluctuation RDDI force FRDDI can be modeled
with the help of equations derived in Section 3 for the
cases of both long- and short-range RDDI. While mod-
eling the dynamics of closely spaced atom in the trap
(for instance, atoms located in the same micropotential
hole), the latter leads to the so-called cold collisions
and, as a result, to the escape of atoms from the trap.

In order to simulate the fluctuating character of the
RDDI forces on a computer, we model it with the help
of independent random forces, the amplitudes of which
are generated with the help of a computerized random-
number generator in such a way so as to preserve the
given level of the mean-square fluctuations of the
RDDI forces. Specifically, we use the following for-
mula for the mean-square dispersion of the integral of
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matrix of the form

and i, j label the atoms. Projections of the forces  =

, which satisfy relation (13), can be written
with the help of independent random variables as

(14)
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formly distributed in the interval [–1/2, 1/2], which can
be generated with the help of a regular computerized
random-number generator.

σλ
i j

2

∆t( ) Fλ
ij τ( ) τd

0

∆t

∫
2

Nλ
ij∆t,= =

Fλ
i j,( )

Nλ
i j,( )

Nλ
i j,( )

N N
11

N
12

–

N
12

– N
11

 
 
 
 

;=

F fλ
i( )

F i j,( )
j∑

F fλ
1( )

2 Nλ
11

Nλ
12

+( )/∆tξ1
λ(=

– 12 Nλ
11

Nλ
12

–( )/∆tξ2
λ )/ 2,

F fλ
2( )

12 Nλ
11

Nλ
12

+( )/∆tξ1
λ(=

+ 12 Nλ
11

N12
λ

–( )/∆tξ2
λ )/ 2,

ξ1 2,
λ

–1 × 108

–8 × 107

–6 × 107

–4 × 107

–2 × 107∆Ω, Hz
2 × 10–19

4 × 10–19

6 × 10–19

8 × 10–19

1 × 10–18

P, W

4 × 10–30

8 × 10–30

0

α, J/s

Fig. 3. Radiation friction coefficient α versus the dimensionless frequency detuning 2δ/γ0 and the normalized probe laser beam
intensity I/I0.



LASER PHYSICS      Vol. 15      No. 8      2005

DYNAMICS OF ATOMS INTERACTING VIA THE RADIATION FIELD 7

5. PRELIMINARY ESTIMATES

Before we discuss simulation results for the atomic
motion in the trap in the next section of the paper, let us
first make some estimates of the key parameters defin-
ing atomic dynamics, namely, the diffusion time for an
atom in the trap and the escape time, which is the time
an atom needs to escape from the trap due to the RDDI
(in the next section, all other factors are also taken into
account).

The typical energy that an atom receives from the
recoil after photon emission or absorption can be esti-
mated with the help of the following formula:

It does not exceed the potential microtrap depth, which
is of the order of 16 mK [5]. Therefore, the absorption
or emission of single photons does not lead to the
atom’s escape from the microtrap, and we can model
the atomic motion as a diffusion process. The typical
diffusion time for such a process, T ~ 10–8 s, is much
smaller than all of the typical times of the translational
atomic motion in the trap, so that the Markov approach
is adequate for use.

Let us first estimate the typical time necessary for
atoms to escape from the trap due to the action of the
probe resonant laser field but without the optical poten-
tial of the trap. In this case, the dynamics of an atom in
the trap can be considered in velocity space as the
Wiener process, which is characterized by the linear
growth of the atom’s velocity dispersion versus time,
and we can estimate the escape time of the atom as

(15)

where ma is the atom mass, a is the typical size of the
trap, and N0 is the spectrum of the fluctuating force.
Putting the experimental parameters given in Section 2
into Eq. (15), we get τf ~ 10–4 s.

Then, let us estimate the typical diffusion time for
an atom in the trap assuming that the atom undergoes a
“narrow-band dynamics,” when the spectrum of atom
oscillations is localized in the vicinity of the fundamen-
tal frequency ω0. This assumption is valid because the
atomic oscillations are much faster than the time neces-
sary for the atom to leave the trap due to the fluctuating
RDDI force. Therefore, the narrow-band dynamics
regime is established. In this regime, oscillations of
atoms have the following form:

where xc and xs describe slow (with respect to the car-
rier frequency) independent oscillations of the quadra-
ture amplitudes. Instead of exact second-order equa-

ε �ω/c( )2
/2mkB � 0.2 µK.–=

τ f

ma
2
a

2

N0
------------3 ,=

x t( ) xc t( ) ω0tcos xs t( ) ω0t,sin+=

tions for these quadratures, in our case, we can use the
shortened equations of the form

(16)

In order to estimate the diffusion time, one needs to
neglect the friction α. Then, the solution is simply the
integral of ξ(t) over the time, and averaging over its
quadrature gives

Replacing ∆x with the typical size of the microtrap a,
we will get the typical diffusion time ∆t:

(17)

Though the estimates we made in this section are rela-
tively rough, they fulfill the validity relation τD � 2π/ω0
between the diffusion time and the period of atomic
oscillations. Comparing the diffusion time with the
friction parameters of the trap, one can make prelimi-
nary conclusions about the probability of atoms escap-
ing from the trap due to the fluctuating RDDI force.

6. COMPUTER SIMULATION RESULTS 
OF ATOM DYNAMICS IN AN OPTICAL

DIPOLE TRAP

In computer experiments summarized in this sec-
tion, we analyze the role of the RDDI interactions
affecting the dynamics of atoms in an optical dipole
trap under the action of a resonant probe laser field.
Varying both the parameters of the trap and the inten-
sity and frequency detuning of the probe field, we were
able to model the RDDI interactions between atoms in
short- and long-range limits and to clarify their impor-
tance. The influence of a buffer gas in the trap has not
been taken into account in our model.

The motion of atoms in the trap is calculated with
the help of Eq. (11). In modeling the trajectories of
atoms, we set the initial coordinates of the atoms as ran-
dom deviations from the equilibrium coordinates in the
minima of the optical potential of the trap, and their ini-
tial velocities are distributed according to the Maxwell
distribution at a given temperature. The latter depends
on the temperature of the atoms, which we set equal to
the experimental value of about T = 40 µK [3–5]. At
this temperature, atoms are localized in the micropoten-
tial minima for quite a long time.

By varying the intensity of the resonant probe laser
field, we can vary the degree of the RDDI interaction of
atoms in the trap and, correspondingly, the lifetime of
the atoms in the trap. As follows from Fig. 2b, the max-
imum fluctuating RDDI force is achieved at the maxi-
mum of the correlation function in the figure, i.e., at an

maω0

dxc

dt
-------- mαω0xc+ ξ t( ).=

∆x
2〈 〉

N0∆t

ma
2ω0

2
-------------.=

τD

ma
2ω0

2
a

2

N0
------------------- 10

2–
 s.∼=
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intensity of the resonant probe laser beam of about
0.071 W/cm2 (Section 3A).

By also varying the interatomic distance, we can
study how the atom dynamics depends on the distance
between potential microholes of the optical dipole
potential in which the atoms are localized. The qualita-
tive difference between the case of two atoms localized
in different/neighboring microtraps and in the same
microtrap is that, in the former case, there are no cold
collisions between atoms.

In our computer experiment, we will first study the
case of a tightly focused optical dipole trap with the
parameters found in [3], which provides for deep local-
ization of atoms in the microtraps. As a result, we have
strong RDDI interaction between atoms localized in the
same microtrap and, correspondingly, a short lifetime
of atoms in the trap. Experimental conditions also allow
for the interatomic distance to be changed between 1 to
10 µm, which covers both the case of two atoms in the
same microtrap or of two atoms in different microtraps
that we simulate in the computer experiments.

Computer simulation results for the lifetime of
atoms in the optical dipole trap versus the interatomic
distance are shown in Fig. 4. These results show that the
lifetime of atoms in the trap increases with increasing
interatomic distance, which means that the RDDI inter-
action between atoms under the action of the resonance
probe laser field vanishes for large interatomic dis-
tances. The lifetime dependence in Fig. 4 can be
approximated with the following simple exponential
expression:

(18)

where R is the average over the atom’s oscillatory
interatomic distance in µm. It is important to note here
that our simulation results for the lifetime correspond
well to our previous estimate of the diffusion time in
Section 5.

τ 4.80 10
4–
e

R/2.87–
3.45 10

3–
 s,×+×–=

Due to the fluctuating character of the RDDI force,
our simulation results also have statistical character and
must be averaged over a large number of realizations in
order to give reliable numbers. The dependence in
Fig. 4 clearly shows a substantial dispersion, which is
due to the small number of computed realizations (ten
in our case).

From numerical simulation of Eqs. (11), we can
estimate, for the case of long-range RDDI, the heating
rate of atoms in the trap under the action of the reso-
nance probe laser field with the help of the following
approximate formula:

(19)

where R is the average interatomic distance in µm over
the atomic oscillations.

In order to estimate how essential the contribution
from the fluctuating RDDI force due to the interactions
between atoms is, we need to make similar calculations
under the same conditions for a single atom. This gives
us an average lifetime (or escape time) of the atom in
the microtrap of τ = 4.05 × 10–3 s and, respectively, a
heating rate

(20)

Comparing this result with the previous one for two
interacting atoms, one can clearly see that the RDDI
force between two atoms gives a substantial contribu-
tion when atoms are spaced by a distance of approxi-
mately equal to or less than the wavelength; with
increasing interatomic distance, the force rapidly van-
ishes and the self-action RDDI force dominates (see
Section 3).

One can also check if the dynamics of a single atom
in the trap is similar to the dynamics of one of the two
atoms in the trap when the interatomic distance
between them significantly exceeds the wavelength (in
the limit R  ∞). This can be easily done both by
comparing approximating formulas (19) and (20) and

by a special numerical simulation, which gives  =

6.39 × 10–23 J/s, a value that corresponds well with esti-
mate (20) for the heating rate of a single atom in the
trap.

In case in which both atoms are located in the same
microtrap, the short-range RDDI could lead to cold col-
lisions between them and, finally, in the escape of an
atom or atoms from the trap. At a resonant probe laser
field intensity that is lower than the saturation intensity
of the atom, these cold collisions practically do not
depend on the resonant field intensity and can be
described by a jump process of atoms escaping from the
trap [3]. When the intensity of the resonant probe laser
field is of the same order of magnitude as the saturation
intensity or exceeds it, the short-range RDDI comes

∆E
∆t
------- 7.57 10

23–
–1.18 10

23–
e

R/2.53( )–
 J/s,××=

∆E
∆t
------- 6.42 10

23–
 J/s.×=

∆E
∆t
-------

3.05

1 2 3 4

3.10

3.15

3.20

3.25

3.30

3.35

3.40

R12, µm

τ, ms

Fig. 4. Lifetime of atoms in an optical dipole trap versus the
interatomic distance at I/I0 = 3.
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into play and results in a substantial reduction of the
escape time for atoms in the trap, up to the case when
the probability of an atom escaping from a microtrap
populated by two atoms becomes equal to the probabil-
ity of single atoms escaping from different microtraps.

Simulation results for the lifetime of atom(s) in the
trap at moderate intensities are shown in Fig. 5. An
analysis of the results for two atoms sitting in one
microtrap (shown in Fig. 5a) give the following esti-
mate for the average lifetime:

where gl � 1 is the dimensionless Rabi frequency.
Though the lifetime is a constant, its estimate (as can be
seen in Fig. 5) has an essential dispersion. Our simula-
tion results correspond well to those of an experiment
with atoms in an optical dipole trap [3] (for the param-
eters of the experiment, see also Section 2).

With the different set of experimental parameters
used in [5], the atoms in the trap are much less well-
localized in the radial direction and the localization
area is about ~5 µm. As a result, we can expect cold col-
lisions with a probability two orders of magnitude less
than for the previous set of parameters. From a simple
formula for the collision frequency

where σ is the collision cross section, v is the average
atom velocity, and V is the volume where atoms are
localized, it follows that increasing the localization vol-
ume results in a decrease in the collision frequency.
Even such a simple estimate shows that, for these
experimental conditions, we predominantly have the
case of diffusion-type motion of the atoms in the trap,
even in the case when both atoms are localized in the
same microtrap.

Additional information in the computer simulation
results lies in the spectrum of the dynamical variables
of atoms localized in the trap. Equation (11), which
governs the motion of atoms in the trap, is a nonlinear

τ gl( ) 1.48 10
4–
 s,×=

ν σv /V ,=

equation, and the oscillations of the atoms are quasi-
harmonic. Therefore, a decrease in the frequency of
atomic oscillations (i.e., the low-frequency shift of the
spectrum of oscillations) due to the anharmonicity of
the oscillation potential as a function of amplitude gives
us additional information about an increase in the
amplitude of the oscillations and, respectively, the
energy of an atom. Spectra of the oscillations of a single
atom and one of the two interacting atoms in the trap
are shown in Fig. 6.

Also, the width of the spectrum of atomic oscilla-
tions characterizes how the resonant probe laser radia-
tion affects the fluctuations of the atoms due to the
RDDI. An increase in the RDDI fluctuating force leads
to deformation of the spectrum (it is shifted in fre-
quency and becomes wider), which is absent at small
atomic energies (E = kT � Udip), when the harmonic

0
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Fig. 5. Lifetime dependencies of two atoms in the trap, which sit either in one (a) or inneighboring (b) micropotential holes versus
the resonance laser pump intensity.
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Fig. 6. Spectra of oscillations of a single atom (solid line)
and one of the two interacting atoms in the trap (dashed
line) along the z axis at I/I0 = 3.
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approximation we used in Section 2 to estimate the
oscillation frequency of atoms in the microtraps is
valid.

Because the RDDI interaction for a single atom and
two interacting atoms in the trap leads qualitatively to
the effective heating of atom(s) and, therefore, allows
them to escape from the trap, it is worthwhile to make
a comparative analysis of a single atom and one of the
two interacting atoms in the trap at the same initial con-
ditions. Such simulation results are shown in Figs. 7
and 8.

From Fig. 8, we can estimate the lifetime of the
atom in the trap versus its initial energy, which can be
approximated with the following exponential depen-
dence:

Figure 8b shows the temporal dependencies of the total
energies of a single atom in the trap and one of the two
atoms trapped in neighboring micropotential holes.
One can clearly see that, by the end of the time scale,
the total energy of the atoms has sharply increased in
value, which indicates that the atoms leave the trap at
this moment. An analysis of both Figs. 8a and 8b shows
that the RDDI can result in atoms escaping from the
microtrap in both cases—when a single atom sits in a
microtrap and when two atoms sit in the same or neigh-
boring microtraps.

7. CONCLUSIONS

In conclusion, we have theoretically and in com-
puter simulations clarified the role of resonant dipole–
dipole interactions on the atom dynamics in an optical
dipole trap under the action of an additional resonant
probe laser field. It is shown that the interaction of
atoms via the RDDI causes a substantial modification
of the atom dynamics and a shortening of the lifetime
of the atoms in the trap. Due to its physical nature, the
RDDI is observed more clearly in the case of closely
spaced atoms, for instance, atoms localized in the same
micropotential hole of the optical potential of the trap.
However, this effect can be significantly increased by
irradiating atoms localized in the trap with an addi-
tional resonant probe laser beam. By varying both the
parameters of the optical dipole trap and the intensity of

τ 2.33 10
3–
e

E/0.173U0–
 s.×=

0 1 2 3 4
t, ms

–0.2

–0.1

0.0

0.1

0.2
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Fig. 7. Temporal dependence of the axial coordinate of a
single atom (solid line) and the center of gravity of two
interacting atoms (dashed line) in the trap with the same ini-
tial conditions at I/I0 = 3. The symbol × denotes the moment
when the atom leaves the trap.
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Fig. 8. (a) Temporal dependence of the total energy of a single atom in a micropotential hole and its theoretical approximation
(smooth solid line). (b) Temporal dependencies of the total energies of a single atom in the trap (solid line, similar to (a)) and one
of the two atoms trapped in neighboring micropotential holes at the resonance laser pump intensity I = 3I0, where I0 is the resonance
transition saturation intensity. The symbol × denotes the moment when the atom leaves the trap.
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the probe field, we can study the role of short- and long-
range RDDI on atoms in the trap in detail.

The results of the computer simulations that we per-
formed for two different sets of parameters of the opti-
cal dipole trap, which correspond to different experi-
mental realizations [3, 4], fit the experimental data well.
Both the theoretical estimates and the computer simu-
lations prove that the RDDI can result in the escape of
atoms from the trap and can reduce the lifetime of the
atoms in the trap.
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APPENDIX A

QUASI-CLASSICAL MODEL FOR THE RDDI

There are two key approaches to modeling the radi-
ation force fluctuations, namely, classical and quantum
[11]. Despite certain limitations of the classical
approach, it is used in many applications, especially for
calculation of the statistical properties of the fluctuating

forces. The latter is valid until the responding quantum
representation of the force can be written in a classical-

like form  =  without any substantial loss of the

key peculiarities of the problem [15]. Here,  and 
are the operators of the atomic dipole moment and the
vacuum electric field, respectively. In accordance with
[12], let us assume that the fluctuating force can be
treated as external white noise. Then, all the informa-

tion on  that is interesting to us can be described in
terms of the correlation function for two atoms at the

points  and :

(A1)

where the angle brackets denote averaging over both
the field and the internal atomic fluctuations; the super-
script T denotes vector transposition and transforms the

column vector  into a corresponding row, so that Gµν
for the fixed values µ, where ν is a 3 × 3 matrix.

From Eq. (A1), because of space delocalization of
the dipole moment and with the help of the diffusion
Markovian approach for the translational atomic
dynamics, we get

F̂ ∇ d̂Ê0

d̂ Ê0

F̂

R̂µ R̂ν

Gµν τ( ) F̂ R̂µ 0,( )F̂
T

R̂ν τ,( )〈 〉 ,=

F̂

(A2)Gµν τ( ) ∂
∂Rµ
----------d̂

T
r R̂µ– 0,( )D r r'– τ,( ) ∂

∂Rν
T

----------d̂ r' R̂ν– τ,( ) r r',dd∫∫=

where D(r – r', τ) = 〈 (r, 0) (r', τ)〉 . This formula
takes into account the finite value even of the smallest
correlation time τc ~ 10–3 fs, which is due to the finite
delocalization rA ~ 1 Å of the dipole moment inside an
atom. For the dipole moment, we can use a local
approximation

where (τ) is the integrated internal dipole moment at

the fixed point Rν at the moment τ;  is the transla-
tional momentum operator of the ν th atom with mass
m. Then, in Eq. (A2) it is necessary to also take into
account translational fluctuations due to the photon
emission process, including interatomic correlations
due to the exchange of photons between atoms.

To do that, we will first reveal the structure of the

fluctuating force . Switching to the Fourier represen-
tation, we find that the fluctuating force has the follow-
ing form in the dipole approximation:

(A3)

Ê Ê
T

d̂ r' R̂ν– τ,( ) d̂ν τ( )δ r' R̂ν– P̂ντ /m–( ),=

d̂ν

P̂ν

F̂

F̂τ
�ω
4π2
-------- d̂ t( ) eλ k( )⋅

λ
∑∫=

× âλ k( ) ikR̂τ iωt–( )exp h.c.–[ ] ikdk,

where (k) are the photon annihilation operators and

eλ(k) are their polarization vectors. Then, for correla-
tion matrix (A2), neglecting nonzero photon field tem-

perature values and using the approximation  = 

+  for the translational motion, we get

(A4)

where  is the atom velocity operator and  is the
transverse projection of the dipole moment onto the

wave vector k; �s(τ) =  is the correlation

function of the sth transition operator. The factor δµν in
Eq. (A4) shows that the corresponding contribution for
different atoms does not affect the photon emission pro-
cess, but the exchange of a photon between two atoms,
i.e., a virtual emission–absorption interatomic process,
happens without energy loss.

âλ

R̂τ R̂0

v̂τ

Gµν τ( ) �s τ( ) �ω
4π2
--------d⊥ s

µ∫
s

∑ d⊥ s
ν⋅=

× iωτ δµν
�k

2

2m
--------τ– ik R̂µµ v̂νµτ+( )– kkT k,dexp

v̂ d̂⊥

σsµ
– σsν

+ τ( )〈 〉
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For the corresponding spectral intensity, we get

(A5)

where the matrix function Ss is the Fourier transforma-
tion of the internal atomic correlation function �s(τ). In
order to calculate it, one has to calculate and apply the
relaxation operator with the photon emission correla-
tions taken into account in a similar way. In addition,
the nonfluctuating coherent spectrum contribution has
to be extracted, which means that the atomic transition
operators are to be biased at their average value,

  

APPENDIX B

SELF-ACTION RDDI FORCE FLUCTUATIONS 
FOR A SINGLE ATOM

For a single atom reemitting photons, we can derive
the fluorescence spectrum, which is simply the Fourier
transformation of �s(τ), from Eq. (A5) at µ = ν versus
the frequency ω shifted due to the recoil momentum,
which reads

(B1)

From this equation, one can easily see that the spectrum
of force fluctuations is an integral over the frequencies

 of emitted photons and their directions n = k/k,
where the Doppler shift and recoil energy are taken into
account. For integration over the velocities, we use here
the Doppler broadened spectrum SDs instead of the
spectrum Ss for a fixed atom.

Then, for the case of isotropic Doppler broadening,
the fluorescence spectrum takes the form

(B2)

where , ||, 2  are the projection matrices onto the
directions of the dipole moments and the orthogonal
planes, respectively.

For simplicity, let us assume now that SDs can be
treated as a narrow spectrum around the central fre-
quency ωs. Then, we should consider only the spectral
range with  � ωs and can neglect the recoil energy.

Nµν ω̃( ) Ss ω kv̂νµ– δµν
�k

2

2m
--------– ω̃+
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× �ω
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2mc
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× d ⊥ s
2 nnTω5
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ω̃

N ω̃( ) 2
15
------ �
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5
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2
SDs ω 1 �ω
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------------– 
  ω̃+

s

∑
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∞
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× ω5
dω Ps
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2Ps

⊥
+( ),

Ps
||

Ps
⊥

ω̃

Using the integral equation  = 2πns, where ns is

the excited state population of the sth transition, which
corresponds to the vanishing of τ  0 in the correla-

tion function , and replacing ns with ns –

 in order to extract the coherent part, we
finally get

(B3)

where γs is the decay rate of the sth transition. From this
formula, one can easily see that, at the low frequencies
ω � ωs, the spectral intensity of the force fluctuations
does not depend on the frequency and, therefore, is sim-
ply white noise. Also, the spectral intensity is propor-
tional to the emission rate of each transition and has an
anisotropic character; i.e., the intensity of the compo-
nents orthogonal to ds twofold exceeds the intensity of
the parallel ones.

APPENDIX C

FORCE FLUCTUATIONS FOR TWO ATOMS 
INTERACTING VIA RDDI

For simplicity, let us assume that we can neglect the
fluctuation frequencies  with respect to the frequen-
cies of emitted photons ~ωL. Then, we can replace
Gµν(τ) in Eq. (A4) with the delta function with respect
to the time scale of interest, which means that we are
interested only in calculating the integral value Nµν =

. Inasmuch as the spectral width of the

atomic emission fluctuations is narrow with respect to
that of the vacuum field present in the integral of Eq.
(A4), we can simply use the correlation function �s(τ)

= exp(–ωs t) and, neglecting the Doppler shift
term for the same reason, get the following integral:

(C1)

The correlation  is nonzero because of the
correlations due to photon exchange between the atoms
that are represented by the corresponding terms in the
multiatomic relaxation operator.

For the case in which the dipole moments are paral-
lel to each other and orthogonal to the vector of dis-
placement, i.e.,

(C2)

SDs ωd∫
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2πc
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the integral in Eq. (C1), which we will designate as I,
can be expressed analytically in a simple way:

(C3)

with

(C4)

where ϕµν = ωsRµν /c and the axes Z and X are set along
Rµν and the dipole moment, respectively.

At Rµν  0, i.e., in the case of a single atom, we
get

(C5)

which is the same value that can be found by direct inte-
gration for a single atom. Fluctuations along the dipole
moment are twofold weaker than in the orthogonal
directions.

After calculation of the integral, Eq. (C1) is readily
transformed into the following equation:

(C6)

which differs from Eq. (B3) in that the term denoting
single-atom dispersion is replaced with the interatomic

correlation: ns –   . From
this equation, it also follows that the force fluctuations
are correlated if there are correlations between incoher-
ent oscillations of the atomic dipole transitions. In the
limit of long-range interactions, we have

(C7)

which means that the only long-range fluctuations are
the fluctuations along the interatomic distance.
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APPENDIX D

CALCULATION OF THE RADIATION 
RELAXATION OPERATOR OF THE TWO-ATOM 

ELECTRONIC SUBSYSTEM

We will start with the basic representation of the
relaxation superoperator of a diffusion stochastic pro-
cess in a form of the average second commutator [16]:

(D1)

(D2)

(D3)

where the analog of the Lamb shift is omitted, and

(D4)

For conditions (C2), it takes the form

(D5)

where ϕ = ωaRkl/c and γ0 is the single-atom decay rate.
For closely spaced atoms, we get simply g = 1,

which corresponds to the total correlation of stationary
excitations. Another extreme value, g = –1, corresponds
to the case of antiparallel dipole moments dµ and dν.

For large interatomic distances, we get

(D6)

It is worthwhile to note here that the superposition of
Eqs. (D6) and (C7) gives an inverse square dependence
on the interatomic distance with the positive sign of the
gI factor.

Relaxation operator (D3) without laser excitation
can be simplified by introducing the symmetric and
antisymmetric types of the dynamic variables with the

� lim
1

�
2∆

--------- σ̂k
+ξ̂kτ1

–
σ̂k

–ξ̂kτ1

+
+( ),

k

∑
0

τ2

∫
0

∆

∫–=

σ̂m
+ ξ̂mτ2

–
σ̂m

– ξ̂mτ2

+
+( )

m

∑ �, dτ1dτ2,

� �k �km,
k m≠
∑+∑=

�km

γkl

2
------ σ̂k

–σ̂m
+

� � σ̂k
–σ̂m

++(–=

– σ̂k
–

� σ̂m
+ σ̂m

–
� σ̂k

+– ),

γkl lim
2

�
2∆

--------- ℜ e ξ̂kτ1

+
ξ̂mτ2

–
〈 〉 τ 1 τ2dd

0

τ2

∫
0

∆

∫=

=  
ω

4�π2
------------d⊥

k∫
∞–

∞

∫ d⊥
m

i ω ωa–( )τ ikR̂km–[ ] k τddexp⋅

=  
ωa

3

2π�c
3

--------------- d⊥
k∫ d⊥

m
iωanR̂km/c–( ) n.dexp⋅

γkl γ0g, g
3
2
---ϕ ϕcos ϕsin– ϕ2 ϕsin+

ϕ3
----------------------------------------------------------,= =

g
3 ϕsin

2ϕ
--------------.=



14

LASER PHYSICS      Vol. 15      No. 8      2005

YANYSHEV et al.

use of the basis ones of the types  ⊗   ±  ⊗  .
Then, for a two-level atom with a single-atom basis of
dimension n = 4, we get 16 elements of the two-atom
basis, consisting of four diagonal basis elements  ⊗

, six symmetric elements, and six antisymmetric ele-
ments. Because any physically feasible evolution oper-
ator always has zero matrix elements between the sym-
metric and antisymmetric subspaces, it can be reduced
to the ten-dimensional space. In the general case of g <
1, the corresponding ten eigenvalues are listed below: 

(D7)

From this it follows that, for the closely spaced atoms,
there are two independent stationary states, for λ0 = 0
and λ1 = –1 + g = 0, respectively. The eigen density
matrix basis elements corresponding to the two eigen-
values λ0 and λ1 are given below:

(D8)

Here, we have used the wavefunction basis |00〉 , |01〉 ,
|10〉 , |11〉 , where the indices 0 and 1 denote the ground
and excited states of the atoms, respectively. The first
matrix corresponds to the two-atomic vacuum state,
while the second one corresponds to the sum of the den-
sity matrix of the ground state |00〉  (with the negative
sign) and the coherent antisymmetric excitation of both

atoms. The corresponding eigenbasis  of the physical
variables has an identity matrix equal to the null eigen-
vector and the matrix

(D9)

corresponding to the 1 – g eigenvalue. The null eigen-
vector represents an antisymmetric coherent excitation
with the population (1 – g)/(1 + g) of the excited state.

In order to calculate the force fluctuations, we have
to first investigate the null-space problem for the relax-
ation operator in the presence of laser excitation.
Within the frame of the rotation wave approximation
(RWA), when the unperturbed dynamics is present with
free precession with the laser frequency ωL, the corre-
sponding contribution to the total Liouvillian is

(D10)

where  and  are the Pauli matrices for the µth
atom, gLµ is the corresponding Rabi frequency, and δ is
the laser detuning. For simplicity, we neglect here the
nonradiative dipole–dipole interaction.

For specific geometry (C2), we have gLµ = gL and,
using the ten-dimensional representation of the total
operator � = �r + �L, we can then calculate its eigen-
values and the stationary null-space vector. The corre-
sponding stationary density matrix has the form

(D11)

where
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and  = gL/γ0,  = δ/γ0.

With the help of Eqs. (D11), we can calculate the
normalized correlation coefficient κ = N12/N11:

(D12)

where

From Eq. (D12) it follows that the correlation effects
are mostly revealed in the weak-field limit, at ELdµ/� �
γ, i.e., at the extreme values of κ = , which corre-
spond to the values of g = ±1 and δ = 0.

With the help of two-atom density matrix (D11),
one can the calculate any characteristic of the internal
atomic dynamics, including the correlation matrix

�s(τ) = exp(–ωs t), which is used to deter-
mine force correlation matrix (A4).
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